Quick Start Manual for Set-up

Frequency Inverter

Series KFU 210- / 410-

> 0,25 to $9,2 \mathrm{~kW}-230 \mathrm{~V}-\mathrm{KFU} 210-$
> 0,25 to $400 \mathrm{~kW}-400 \mathrm{~V}-\mathrm{KFU} 410-$ $>400 \mathrm{~kW}$ to $1,6 \mathrm{MW}$ On Request

TABLE OF CONTENTS

1 General Information 3
1.1 Safety Instructions 3
1.2 Designated use 5
1.3 Transport and strorage 5
1.4 After unpacking 5
1.5 Place of installation 6
1.6 Operation conditions 6
2 Frequency inverter - type 7
2.1 Identifications on the data plate 7
3 Mechanical Installation 9
3.1.1 KFU 210 sizes 1 and 2 (up to $3,0 \mathrm{~kW}$) - KFU 410 sizes 1 and 2 (up to $4,0 \mathrm{~kW}$) 9
3.1.2 KFU 210 sizes 3 and $4(4,0-9,2 \mathrm{~kW})$ - KFU 410 sizes 3 and 4 ($5,5-15 \mathrm{~kW}$) 10
3.1.3 KFU 410 size 5 (18,5 - 30 kW) 10
3.1.4 KFU 410 size 6 ($37-65 \mathrm{~kW}$) 11
3.1.5 Dimensions without optional components 11
3.1.6 KFU 410 size 7 (75 - 132 kW) 12
3.1.7 Dimensions without optional components size 7 12
3.1.8 KFU 410 / KFU 510 / KFU 610 size 8 (160 - 400 kW) 13
3.1.9 Dimensions without optional components size 8 13
4 Electrical installation 14
4.1 EMC information and connection 15
4.1.1 KFU 210 (up to $3,0 \mathrm{~kW}$) and 410 (up to $4,0 \mathrm{~kW}$) 17
4.1.2 KFU 210 (4,0 to $9,2 \mathrm{~kW}$) and 410 (5,5 and $15,0 \mathrm{~kW}$) 18
4.1.3 KFU 410 (18,5 to 30 kW) 19
4.1.4 KFU 410 (37 to 65 kW) 20
4.1.5 KFU 410 (75 to 132 kW) 21
4.1.6 KFU 410 / KFU 510 / KFU 610 (160 to 400 kW) 22
4.2 Control terminals 24
4.2.1 Control terminals X210A and X210B 25
4.2.2 External 24 V power supply X210A. 1 \& X210A. 2 26
4.2.3 Control terminal X10 27
4.3 X13 connection in KFU510 and KFU610 27
5 Commissioning 29
5.1 Guided commissioning 29
6 Parameter 33
6.1 Description of parameters 33
6.1.1 Adjustable parameters 33
6.1.2 Actual value parameters 35
6.2 Parameter setting options 35
7 Control unit messages 39
7.1 Warning and error messages during operation 39
7.2 Status messages during commissioning (SS...) 41
7.3 Warning and error messages during commissioning (SA.../SF...) 42
8 Technical Data 44
8.1 Size 1 - KFU 210 (0,25 to $1,1 \mathrm{~kW}, 230 \mathrm{~V}$) 44
8.2 Size 2 KFU 210 (0,25 to $1,1 \mathrm{~kW}, 230 \mathrm{~V}$) 45
8.3 Size 3 and 4 KFU 210 (4,0 to $9,2 \mathrm{~kW}, 230 \mathrm{~V}$) 46
8.4 Size 1 KFU 410 (1,85 to $4,0 \mathrm{~kW}, 400 \mathrm{~V}$) 47
8.5 Size 2 KFU 410 (1,85 to $4,0 \mathrm{~kW}, 400 \mathrm{~V}$) 48
8.6 Size 3 and 4 KFU 410 (5,5 to $15,0 \mathrm{~kW}, 400 \mathrm{~V}$) 49
8.7 Size 5 KFU 410 (18,5 to $30,0 \mathrm{~kW}, 400 \mathrm{~V}$) 50
8.8 Size 6 KFU 410 (37 to $65 \mathrm{~kW}, 400 \mathrm{~V}$) 51
8.9 Size 7 KFU 410 (75 to 132 kW, 400 V) 52
8.10 Size 8 KFU 410 (160 to 400 kW, 400 V) 53
8.11 Size 8 KFU 510 (160 to $400 \mathrm{~kW}, 525 \mathrm{~V}$) 54
8.12 Size 8 KFU 610 (160 to 400 kW, 690 V) 55

1 General Information

This documentation describes the first steps for easy commissioning of frequency inverters series KFU 210- / 410-.

This series can be recognized by its label on the case and the identification below the top cover.

1.1 Safety Instructions

WARNING

- Note and follow all safety and usage instructions in this manual.
- This manual must be read before installation and commissioning of the frequency inverter.
- Non-compliance with the safety and usage instructions may result in death, serious injuries and significant material damage.
- Only qualified technical personnel who is familiar with the installation, commissioning and use of frequency inverters may work on the frequency inverter.
- The electrical installation must be carried out by qualified electricians according to the general and regional safety and installation directives.
- Persons not familiar with the operation of the frequency inverter and children must not have access to the device.
- When working at the frequency inverter, comply with the relevant accident prevention regulations, the applicable standards BGV A2 (VBG 4), VDE 0100, standards governing work on systems with dangerous voltages (e.g. EN 50178) and other national directives.
- Prior to commissioning and start of operation as intended, all covers must be fixed, all standard equipment components of the frequency inverter must be installed, and the terminals must be checked.
- No connection work shall be carried out while power supply is on.
- Do not touch any terminals as long as the DC-link capacitors are charged.

Sizes 1 through 7 (up to 132 kW): The DC-link may have dangerous voltage levels even up to 3 minutes after shutdown.
Size 8 (as from 160 kW): The DC-link may have dangerous voltage levels even up to 10 minutes after shutdown.

WARNING!

- Do not touch the heat sink of the frequency inverter during operation. Danger of burns due to high surface temperatures.
- Do not remove any covers of the frequency inverter during operation.
- Please note that Küenle Antriebssysteme will not accept any responsibility for compatibility with third-party products (e.g. motors, cables, filters, etc.). If you use the device in combination with third-party products, you do so at your own risk.
- The earth leakage current of the frequency inverter may exceed AC 3.5 mA or DC 10 mA .
- Please note (according to EN61800-5-1): This product may cause direct current in the protective earth conductor. Where residual current devices (RCD) or residual current monitors (RCM) are used as a protection against direct or indirect contact, only RCDs / RCMs of Type B are permissible on the power supply side of this product.
- Do not touch electronic components or contacts.
- Defective components must not be put into operation.
- Any repair work may only be carried out by the manufacturer or persons approved/licensed by the manufacturer.
- Any repair work must be carried out by qualified electricians.
- Except for modifications described in this document, the frequency inverter must not be changed in any way.
- Do not connect inappropriate voltage sources.
- Keep the instructions accessible to the user.

NOTE

The frequency inverter may be connected to power supply every 60 s .
This must be considered when operating a mains contactor in jog operation mode. For commissioning or after an emergency stop, a non-recurrent, direct restart is permissible.

NOTE

For more information about the range of functions of the frequency inverter and about operation, maintenance and storage, refer to the co-applicable Operating Instructions.

1.2 Designated use

The product is a frequency inverter. It is designed for

- installation in machines and electrical equipment
- industrial environments

The frequency inverters are electrical drive components intended for stationary installation in electrical cabinets of industrial plants or machines. They may only be used for driving asynchronous three-phase squirrel cage motors or permanently excited three-phase synchronous motors which are designed for operation with frequency inverters. Where built-in motor temperature sensors are evaluated via the frequency inverter, a double/reinforced insulation of the temperature sensor against the motor winding must be provided according to DIN EN 61800-5-1. Commissioning and start of operation is not allowed until it has been verified that the machine meets the requirements of the EC Machinery Directive 2006/42/EC and DIN EN 60204-1.
The frequency inverters meet the requirements of the low voltage directive 2006/95/EEC and DIN EN 61800-5-1. CE-labeling is based on these standards. Responsibility for compliance with the EMC Directive 2004/108/EC lies with the operator.
Frequency inverters are only available at specialized dealers and are exclusively intended for commercial use as per EN 61000-3-2.
No capacitive loads may be connected to the frequency inverter.

1.3 Transport and strorage

- Ambient temperature: $-25 \ldots 55^{\circ} \mathrm{C}$
- Relative humidity: 5 ... 95%, no water condensation
- Store product in its original package in dust-free room.
- Avoid high temperatures.
- After one year of storage, connect the device to mains voltage for 60 minutes.

1.4 After unpacking

- \quad Check if the delivered devices corresponds to the order.
- Check the device for transport damage and completeness.
- Any defects/damage must be reported to the supplier immediately.

1.5 Place of installation

- In rooms without weather exposure.
- Avoid direct insolation.
- Avoid dust.
- Not in the neighborhood of strong electromagnetic fields.
- Not in the neighborhood of inflammable material.
- Provide for sufficient cooling. Install a fan if the frequency inverter is installed in a closed electrical cabinet.
- Altitude of installation: $\leq 4000 \mathrm{~m}$, above 1000 m with reduced power (reduced output current).
- Ingress protection rating of frequency inverter: IP20.
- The frequency inverter produces noise. For this reason it should be installed in areas where people normally don't stay.
- \quad Noise emission in operation is $<85 \mathrm{~dB}(\mathrm{~A})$ in the case of sizes 1 through 7 .
- Noise emission in operation is approx. $86 \mathrm{~dB}(\mathrm{~A})$ in the case of size 8 . Ear protectors must be used when staying near the frequency inverter
- Use of the device in explosive atmospheres is not permitted.

1.6 Operation conditions

- \quad Size 1...7:

Ambient temperature: $0 \ldots . .55^{\circ} \mathrm{C}$, as from $40^{\circ} \mathrm{C}$, power reduction of $2.5 \% / \mathrm{K}$ should be considered.

- \quad Size 8

Ambient temperature: $-25 \ldots 55^{\circ} \mathrm{C}$, as from $45^{\circ} \mathrm{C}$, power reduction of $2.5 \% / \mathrm{K}$ should be considered.

- Relative humidity: 5 ... 85%, no water condensation
- Ambient pressure: 70 ... 106 kPa to be checked
- \quad The frequency inverter may be operated in TN, TT and IT grid types.
- Operation in a corner-grounded TN grid shall not be permissible.
- Environment specification: Pollution degree 2 and overvoltage category III (IEC 60664-1 /DIN VDE 01101).
- \quad The frequency inverter may be connected to power supply every 60 s . If the unit is switched on more frequently, it may be damaged. This must be considered when operating a mains contactor in jog operation mode.
- Max. permissible expected short circuit current at mains connection:
- up to 132 kW device power (Size 7): 5 kA ;
- 160... 250 kW device power (size 8): 18 kA
- as from 315 kW device power (size 8): 30 kA

2 Frequency inverter - type

- Identify the type of frequency inverter.
- \quad Check if frequency inverter rated voltage matches the local mains voltage.

2.1 Identifications on the data plate

- Type identifier, e.g. KFU 410-075/37/1.5 xxxx

410: Rated voltage 400 V (or 210: = rated voltage 230 V)
075: Rated current = identifier
37: Recommended power
1,5: ...-x Rated torque
xxxx: Special design, where applicable

- Marking for UL508c (where applicable)
- Part number
- Serial number
- Warning symbols

Warning! Components sensitive to electrostatic energy.
Warning! High leakage current.
Warning! Dangerous voltage. Danger of electric shock.
Warning! Hot surface,

Identifier	Size	Recommended power KFU 210: AC $1 \times 230 \mathrm{~V} / 3 \times 230 \mathrm{~V}$
-1,6	1	0,25 kW
-2,5		0,37 kW
-3,0		0,55 kW
-4,0		0,75 kW
-5,4		1,1 kW
-7,0	2	1,5 kW
-9,5		2,2 kW
-12,5		3,0 kW ${ }^{\text {1) }}$
-18,0	3	4,0 kW
-22,0		$5,5 \mathrm{~kW}^{2}$
-32,0	4	$7,5 \mathrm{~kW}^{2}$
-35,0		9,2 kW^{2})

-32	4	15,0 kW
-40	5	18,5 kW
-45		22,0 kW
-60		30,0 kW
-75	6	37,0 kW
-90		45,0 kW
-110		55,0 kW
-125		65,0 kW
-150	7	75,0 kW
-180		90,0 kW
-210		110,0 kW
-250		132,0 kW
-305	8	160,0 kW
-380		200,0 kW
-475		250,0 kW
-595		315,0 kW

KFU 210- / 410-

Identifier	Size	Recommended power KFU 410: AC 3x400V
-1,0	1	0,25 kW
-1,6		0,37 kW
-1,8		0,55 kW
-2,4		0,75 kW
-3,2		$1,1 \mathrm{~kW}$
-3,8		1,5 kW
-4,2	2	1,85 kW
-5,8		2,2 kW
-7,8		$3,0 \mathrm{~kW}$
-9,0		$4,0 \mathrm{~kW}$
-14,0	3	5,5 kW
-18,0		7,5 kW
-22		9,2 kW
-25	4	11,0 kW

-645		$355,0 \mathrm{~kW}$			
	735				$400,0 \mathrm{~kW}$

Identifier	Size	Recommended power KFU 510: AC 3x525V KFU 610: AC 3x690V
	8	160,0 kW
		200,0 kW
		250,0 kW
		$315,0 \mathrm{~kW}$
		355,0 kW
		400,0 kW

${ }^{1)}$ Maximum output current $=9.5 \mathrm{~A}$ with single-phase and two-phase connection
${ }^{2)}$ Three-phase connection permissible only.

3 Mechanical Installation

WARNING!

- During installation, comply with the following installation and safety instructions as well as the installation and safety instructions of the co-applicable documents.
- Mount the devices with sufficient clearance to other components so that the cooling air can circulate freely. Avoid soiling by grease and air pollution by dust, aggressive gases, etc.
- Make sure that no foreign particles (e.g. dust, chips, wires, screws, tools) can get inside the frequency inverter.
- Install the frequency inverter on a non-flammable surface.
- The frequency inverter may only be installed in vertical position.
- \quad Screw the frequency inverter on a metal surface (unpainted).
- The frequency inverter must be grounded.
- For equipotential bonding, connect the frequency inverter, electrical cabinet, motor case, filter, etc. to a common grounding point via short cables.

3.1. KFU 210 sizes 1 and 2 (up to $\mathbf{3 , 0} \mathrm{kW}$) - KFU 410 sizes 1 and 2 (up to $4,0 \mathrm{~kW}$)

Screw fixing brackets to heat sink and mounting plate.

3.1.2 KFU 210 sizes 3 and 4 (4,0-9,2 kW) - KFU 410 sizes 3 and 4 (5,5-15 kW)

Bottom fixing bracket
 (screws M4x60)
Screw fixing brackets to heat sink and mounting plate.

3.1.3 KFU 410 size 5 (18,5 - $\mathbf{3 0}$ kW)

Top screw fixture M4x20

Bottom screw fixture M4x70

Screw fixing brackets to heat sink of frequency inverter and mounting plate.

3.1.4 KFU 410 size 6 ($\mathbf{3 7}$ - 65 kW)

Top screw fixture M5x20

Bottom screw fixture M5x20

Screw fixing brackets to heat sink of frequency inverter and mounting plate.

3.1.5 Dimensions without optional components

	Dimensions in mm				Assenmbly dimensions in mm			
	kW	a	b	c	a1	a2	b1	c1
KFU 210	0,25...1,1	190	60	178	210... 230	260	30	133
	1,5...3,0	250	60	178	270... 290	315	30	133
	4,0...5,5	250	100	200	270... 290	315	12	133
	7,5...9,2	250	125	200	270... 290	315	17,5	133
KFU 410	0,55...1,5	190	60	178	210... 230	260	30	133
	1,85...4,0	250	60	178	270... 290	315	30	133
	5,5...9,2	250	100	200	270... 290	315	12	133
	11,0...15,0	250	125	200	270... 290	315	17,5	133
	18,5...30,0	250	200	260	270... 290	315	20	160
	37,0...65,0	400	275	260	425... 445	470	20	160

3.1.6 KFU 410 size 7 (75-132 kW)

The diameter of the fixing holes is 9 mm.

Screw the rear wall of the frequency inverter heat sink to the mounting plate.

3.1.7 Dimensions without optional components size 7

	Dimensions in mm				Assembly dimensions in mm						
KFU410	kW	a	b	c	a1	b1	b2	b3	c1	c2	c3
KFU410	75,0...132,0	510	412	351	480	392	382	342	338	305	110

3.1.8 KFU 410 / KFU 510 / KFU 610 size $\mathbf{8 (1 6 0 - 4 0 0 ~ k W) ~}$

3.1.9 Dimensions without optional components size 8

	Dimensions in mm				Assembly dimensions in mm			
Type	kW	a	b	c	a 1	b 1	b 2	c 1
KFU410								
KFU510	$160,0 \ldots 400,0$	1067	439	375	1017	330	110	345
KFU610								

NOTE

Before unpacking the frequency inverter, transfer it as close as possible to the designated place of installation.

- \quad First, remove the protective packaging.
- \quad Screw 2 crane eyebolts into the threads provided for that purpose.
- Use the crane eyebolts and a crane for lifting, handling and installation. The crane must be of a design that it can carry the weight of the frequency inverter.

4 Electrical installation

DANGER!

- The five safety rules must be complied with.
- Disconnect the frequency inverter from mains voltage (AC and DC) and protect it against being energized unintentionally.
- Verify safe isolation from power supply.
- When the frequency inverter is disconnected from power supply, the mains, DC-link voltage and motor terminals may still be live for some time. Wait for some minutes until the DC link capacitors have discharged before starting to work at the unit.
- \quad Sizes 1 through 7 (up to 132 kW): The DC-link may have dangerous voltage levels even up to 3 minutes after shutdown.
- \quad Size 8 (as from 160 kW): The DC-link may have dangerous voltage levels even up to 10 minutes after shutdown.
- Switch off power supply before connecting or disconnecting the mains cables to/from terminal X 1 , and the motor cables and braking resistor to X 2 .

NOTE

- The cables connected to the frequency inverters may not be subjected to high-voltage insulation tests.
- Use copper cables designed for an ambient temperature of at least $30^{\circ} \mathrm{C}$.
- In the case of UL/CSA installations: Only use $75^{\circ} \mathrm{C}$ copper cables.
- The earth leakage current of the frequency inverter may exceed AC 3.5 mA or DC 10 mA .

NOTE

Please note (according to EN61800-5-1):

- This product may cause direct current in the protective earth conductor. Where residual current de-vices (RCD) or residual current monitors (RCM) are used as a protection against direct or indirect contact, only RCDs / RCMs of Type B are permissible on the power supply side of this product.

4.1 EMC information and connection

The frequency inverter is designed according to the requirements and limit values of product norm EN 61800-3 with an interference immunity factor (EMI) for operation in industrial applications. Electromagnetic interference is to be avoided by expert installation and observation of the specific product information.

Measures

Install the frequency inverters and commutating chokes on a metal mounting panel. Ideally, the mounting panel should be galvanized, not painted.
Provide proper equipotential bonding within the system or plant. Plant components such as electrical cabinets, control panels, machine frames must be connected by means of PE cables, i.e. sufficient area and with good conductivity.
The shield of the control cables is to be connected to ground potential properly, i.e. with good conductivity, on both sides (shield clamp). Mount shield clamps for cable shields close to the unit.
Connect the frequency inverter, the commutating choke, external filters and other components to an earthing point via short cables.
Excessive cable length and loosely suspended cabling must be avoided.
Contactors, relays and solenoids in the electrical cabinet are to be provided with suitable interference suppression components.

1. Fuse
2. Circuit breaker
3. Line choke (optional or mandatory)
4. Input filter (optional)
5. Cable shield (recommended)
6. Brake resistor (optional)
7. Output filter (optional)

(A)

Mains connection

The mains supply cable may be as long as required. To be separated from control, data and motor cable.
B DC-link connection
The frequency inverter is to be connected to the same mains potential or a common direct voltage source. Cables with a length $>300 \mathrm{~mm}$ must be shield-ed, the cable shield must be connected to the mounting plate on both sides. Use twisted cables where possible.
C Control connection
Control and signal cables must be kept physically separate from the power cables. Analog signal lines are to be connected to the shield potential on one side. Install sensor cables separate from motor cables.
The low voltage circuits (e.g. terminal X210A, X 210 B) are isolated from the main circuit (e.g. U, V, W) by way of safety isolation and safety impedance.
(D) Motor and brake resistor

The shield of the motor cable is to be connected to ground potential properly on both sides. On the motor side use a metal compression gland. On the frequency inverter side an appropriate shield clamp is to be used. The signal cable used for monitoring the motor temperature must be kept separate from the motor cable. Connect the shield of this line on both sides. If a braking resistor is used, the connection cable must also be shielded, and the shield is to be connected to earth potential on both sides.
(E) Relay

The relay enables using high-energy signals.

As from size 8 , with $\mathrm{AC} 3 \times 525 \mathrm{~V}$ or $\mathrm{AC} 3 \times 690 \mathrm{~V}$ mains operation, terminal X 13 must be connected additionally. Note the connection information for size 8.

Line choke

Line chokes reduce mains harmonics and reactive power. In addition, a longer service life of the frequency inverter is possible. When using a line choke, note that line chokes may reduce the maximum output voltage of the frequency inverter. The line choke must be installed between the mains connection and the input filter.

Input filter

Input filters reduce grid-bound, high-frequency radio interference voltage. Install input filter on the mains side upstream of the frequency inverter.

Caution!

4
The frequency inverters meet the requirements of the low-voltage directive 2006/95/EC and the requirements of the EMC directive 2004/108/EC. The EMC product standard EN 61800-3 relates to the drive system. The documentation provides information on how the applicable standards can be complied if the frequency inverter is a component of the drive system. The declaration of conformity is to be issued by the supplier of the drive system.

4.1.1 KFU 210 (up to $\mathbf{3 , 0} \mathrm{kW}$) and 410 (up to $4,0 \mathrm{~kW}$)

Mains connection, X1

1 With a mains current above 10 A , the mains power connection $230 \mathrm{~V} 1 \mathrm{ph} / \mathrm{N} / \mathrm{PE}$ and the mains power connection $230 \mathrm{~V} 2 \mathrm{ph} / \mathrm{N} / \mathrm{PE}$ are to be done on two terminals.

Motor connection

For connection of the ground conductor of the mains and motor cable, use the provided terminal connection options X1 and X2. Other connection options for connecting the mains and motor cable are not permissible.
For connection of a braking resistor, use terminals $\mathrm{R}_{\mathrm{b} 1}$ and $\mathrm{R}_{\mathrm{b} 2}$.

4.1.2 KFU 210 (4,0 to $9,2 \mathrm{~kW}$) and 410 (5,5 and $\mathbf{1 5 , 0} \mathrm{kW}$)

Mains connection

Motor connection

For connection of the ground conductor of the mains and motor cable, use the provided terminal connection options X1 and X2. Other connection options for connecting the mains and motor cable are not permissible.
For connection of a braking resistor, use terminals $\mathrm{R}_{\mathrm{b} 1}$ and $\mathrm{R}_{\mathrm{b} 2}$.

4.1.3 KFU 410 (18,5 to $\mathbf{3 0} \mathrm{kW}$)

Mains connection

$3 p h / 400 \mathrm{~V}$ AC

Motor connection

For connection of the ground conductor of the mains and motor cable, use the provided terminal connection options X1 and X2. Other connection options for connecting the mains and motor cable are not permissible.
For connection of a braking resistor, use terminals $\mathrm{R}_{\mathrm{b} 1}$ and $\mathrm{R}_{\mathrm{b} 2}$.

4.1.4 KFU 410 ($\mathbf{3 7}$ to $\mathbf{6 5}$ kW)

Mains connection

$3 \mathrm{ph} / 400 \mathrm{~V}$ AC
X1

Motor connection

X2

For connection of the ground conductor of the mains and motor cable, use the provided terminal connection options X1 and X2. Other connection options for connecting the mains and motor cable are not permissible. For connection of a braking resistor, use terminals $R_{b 1}$ and $R_{b 2}$.

IP20 ingress protection rating is reached with the covers installed. Make sure that the covers are always installed in operation.

Optionally, devices of this size are available without brake chopper. These devices are designed without connecting terminals for the braking resistor.

4.1.5 KFU 410 ($\mathbf{7 5}$ to 132 kW)

Mains connection

IP20 ingress protection rating is reached with the covers installed. Make sure that the covers are always installed in operation.

Optionally, devices of this size are available without brake chopper. These devices are designed without connecting terminals for the braking resistor.

4.1.6 KFU 410 / KFU 510 / KFU 610 (160 to 400 kW)

Mains connection 3 phases:

Mains connection 6 phases:

Motor connection:

Mains connection

3 phases:

$3 \mathrm{ph} / 400 \mathrm{~V}$ AC or $3 \mathrm{ph} / 525 \mathrm{~V}$ AC or $3 \mathrm{ph} / 690 \mathrm{~V}$ AC
6 phases*:
$3 \mathrm{ph} / 400 \mathrm{~V}$ AC or $3 \mathrm{ph} / 525 \mathrm{~V} \mathrm{AC}$ or $3 \mathrm{ph} / 690 \mathrm{~V}$ AC

Motor connection

Connection of brake resistor with temperature switch

Threaded bolt M10x20

IP20 ingress protection rating is reached with the covers installed. Make sure that the covers are always installed in operation.

* 6-phase connection must be done via the same mains feeders and a suitable transformer (e.g. one d and one y winding on secondary side) which shifts all phases by 30° to one another. Alternatively, two transformers can be used (one with d-winding, one with y-winding on secondary side).

4.2 Control terminals

Signal terminals X210 and X410

...
0.3 Nm

Wieland DS 785 / RM3,5

$0.14 \ldots 1.5 \mathrm{~mm}^{2}$ AWG $30 \ldots 16$
$0.14 \ldots 1.5 \mathrm{~mm}^{2}$ AWG 30 16 $0.25 \ldots 1.0 \mathrm{~mm}^{2}$ AWG $22 \ldots 18$
$0.25 \ldots 0.75 \mathrm{~mm}^{2}$ AWG 22 ... 20

Caution!

Power supply must be turned off before connecting control inputs and outputs. Non-compliance can destroy the device.

NOTE

In order to minimize electromagnetic faults and achieve good signal quality, connect the shield of the cable is to be connected to ground potential properly, i.e. with good conductivity, on both sides.

4.2.1 Control terminals X210A and X210B

Control terminal X210A

${ }^{1}$ Control terminals are freely configurable

X210A. 1	Voltage output DC +20 V or input for external power supply DC 24 V $\pm 10 \%$	
X210A. 2	GND 20 V/ GND 24 V (ext.)	
X210A.3	Digital input STOA (first shut-down path)	
X210A.4	Digital input ${ }^{1)}$	Start clockwise (default setting.)
X210A.5	Digital input ${ }^{1)}$	Start anticlockwise (default set..)
X210A.6	Digital input ${ }^{1)}$	Data Set Changeover. 1 (default.)
X210A. 7	Digital input ${ }^{1)}$	Data Set Changeover. 2 (default)

Control terminal X210B

X210B. 1	Digital input ${ }^{1)}$
X210B.2	Digital input STOB (second shut-down path)
X210B.3	S1OUT: Digital output)
X210B.4	Multifunktion output ${ }^{\text {1) }}$ (voltage signal pro portional actual frequency, default setting)
X210B.5	Supply voltage DC +10 V for reference value potentiometer, (Imax $=4 \mathrm{~mA})$
X210B.6	Multifunction input ${ }^{\text {1) }}$ (reference speed $0 \ldots$ $+10 ~ \mathrm{~V}$, default setting)
X210B.7	Ground 10 V

Relay output X10

Control "Safe Torque Off" (STO): Contacts on X210A. 3 and X210B. 2 open ("Low level").
Release of frequency inverter: Contacts on X210A. 3 and X210B. 2 closed ("High level").

The above assignment of the functions to the control terminals is the default setting of parameter Configuration 30 to value 110 or 410 . The functions can be assigned to the control terminals as required. For more configurations, refer to the Operating Instructions.

Technical data of control terminals

Digital inputs (X210A. 3 ... X210B.2): Low Signal: DC 0 V ... 3 V, High signal: DC $12 \mathrm{~V} \ldots 30 \mathrm{~V}$, Input resistance: $2.3 \mathrm{k} \Omega$, response time: 2 ms (STOA and STOB: 10 ms), PLC compatible
Digital output S1OUT (X210B.3): Low Signal: DC 0 V... 3 V, High Signal: DC $12 \mathrm{~V} \ldots 30 \mathrm{~V}$,
Maximum output current: 50 mA, PLC compatible
Multifunction output MFO1 (X210B.4):
Digital output: Low Signal: DC 0 V... 3 V, High Signal: DC $12 \mathrm{~V} \ldots 30 \mathrm{~V}$, PLC compatible
Analog output: DC $19 \ldots 28 \mathrm{~V}$, maximum output current: 50 mA , pulse-width modulated ($\mathrm{f}_{\mathrm{pwm}}=116 \mathrm{~Hz}$),
Frequency signal: Output voltage: DC $0 \mathrm{~V} \ldots 24 \mathrm{~V}$, maximum output current: 40 mA ,
maximum output frequency: 150 kHz
Multifunction input MF1 (X210B.6):
Analog signal: Input voltage: DC $0 \ldots 10 \mathrm{~V}\left(\mathrm{R}_{\mathrm{i}}=70 \mathrm{k} \Omega\right)$, Input current: DC $0 \ldots 20 \mathrm{~mA}\left(\mathrm{R}_{\mathrm{i}}=500 \Omega\right)$,
Digital signal: Low Signal: DC $0 \mathrm{~V} \ldots 3 \mathrm{~V}$, High signal: DC $12 \mathrm{~V} . .30 \mathrm{~V}$, response time: 4 ms , PLC compatible
Conductor cross-section:
The signal terminals are suitable for the following cable sizes:
with ferrule: $\quad 0.25 \ldots 1.0 \mathrm{~mm}^{2}$
without ferrule: $0.14 \ldots 1.5 \mathrm{~mm}^{2}$

4.2.2 External 24 V power supply X210A. 1 \& X210A. 2

The bidirectional control terminals X210A.1/ X210A. 2 can be used as a voltage output or voltage input. By connecting an external power supply of DC $24 \mathrm{~V} \pm 10 \%$ to terminals X210A.1/X210A.2, the function of inputs and outputs as well as the communication can be parameterized and maintained, even when mains voltage is off.

Requirements to be met by external power supply

Input voltage range	DC $24 \mathrm{~V} \pm 10 \%$
Rated input current	Max. 1.1 A
Peak inrush current	Typically: < 25 A
External fuse	Via standard fuse elements for rated current, characteristic: slow
Safety	Safety extra low voltage (SELV) according to EN 61800-5-1

CAUTION!

The digital inputs and the DC 24 V terminal of the electronic control equipment can withstand external voltage up to DC 30 V. Avoid higher voltage levels. Higher voltages may destroy the unit.

4.2.3 Control terminal X10

Term.	Description
$1 \ldots 3$	Relay output, floating change-over contact, response time approx. 40 ms, maximum contact load: make contact: AC $5 \mathrm{~A} / 240 \mathrm{~V}, \mathrm{DC} 5 \mathrm{~A}$ (ohmic) / 24 V break contact: \quad AC $3 \mathrm{~A} / 240 \mathrm{~V}, \mathrm{DC} 1 \mathrm{~A}$ (ohmic) $/ 24 \mathrm{~V}$

4.3 X13 connection in KFU510 and KFU610

When and KFU 510 or KFU 610 is used, connection of $\mathrm{AC} 3 \times 400 \mathrm{~V}$ an X 13 is required.

Auxiliary voltage terminal X13

$1 \ldots 6$	Not used
7	© PE
8	L1
9	L2
10	L3

Connection

Connected load	$\geq 1,2 \mathrm{~kW}$
Supply voltage	$400 \mathrm{~V} \mathrm{+-10} \mathrm{\%}$
Supply frequency	$50 / 60 \mathrm{~Hz}$

KFU 210- / 410-

5 Commissioning

The frequency inverter may be connected to power supply every 60 s . If the unit is switched on more frequently, it may be damaged. This must be considered when operating a mains contactor in jog operation mode.

- Disable release of frequency inverter; there may be no signals at inputs STOA (digital input S1IND/terminal X210A.3) and STOB (digital input S7IND/terminal X210B.2).
- Turn mains voltage on.
- The frequency inverter will perform a self-test.

Other ways of commissioning (e.g. by means of optional communication modules) are described in the co-applicable Operating Instructions.

5.1 Guided commissioning

NOTE

The frequency inverter may be connected to power supply every 60 s . If the unit is switched on more frequently, it may be damaged. This must be considered when operating a mains contactor in jog operation mode.

- Disable release of frequency inverter; there may be no signals at inputs STOA (digital input S1IND/terminal X210A.3) and STOB (digital input S7IND/terminal X210B.2).
- Turn mains voltage on.

The frequency inverter will perform a self-test.

Before the start of guided commissioning, the motor should not have been operated, as a part of the machine data is dependent upon the operating temperature.

- Use the ENT key to select parameter Configuration 30.
- Use the arrow keys to enter the number 110 or 410.

110: sensor-less control acc. to U/f characteristic
410: sensor-less, field-oriented control

If the setup was changed, the "SEtUP" message will be displayed again.

- Confirm this message by pressing the ENT key in order to continue the commissioning procedure.
- After initialization, confirm the selected configuration by pressing the ENT key.
- Select the connected machine via parameter Motor type 369.

NOTE

If the motor type is not entered correctly, the drive may be damaged.

Configure and display the parameters and contolling the inverter can be happen by the optional KP500. This will be plugged on to the front side of the inverter.

| OTR |
| :--- | :--- | :--- | :--- |\quad| Opertation Mode | | |
| :--- | :--- | :--- |
| $0-$ | Unknown | The motor is not a standard type. |
| $1-$ | Asynchronous | Three-phase asynchronous motor, squirrel cage |
| $2-$ | Synchronous | Three-phase synchronous motor |
| $3-$ | Reluctance | Three-phase reluctance motor |
| $10-$ | Transformer | Transformer with three primary windings |

- Enter the motor data indicated on the rating plate in the following parameters.

	No.	Description	No	Description
	370	Rated Voltage	374	Rated Cosinus Phi
	371	Rated Current	375	Rated Frequency
	372	Rated Speed	376	Rated Mech. Power

- Use the arrow keys to select the required parameter and edit the parameter value.
- Use the ENT key to confirm the selected parameter and the parameter values entered..

The rated data of the motor are to be entered according to the specifications on the rating plate for the motor connection type used (star or delta connection).
If the data entered deviate from the rating plate, the parameters will not be identified correctly. The rated data is to be parameterized as per the motor rating plate. Consider the increased rated current of the connected three-phase motor when the motor is switched from star to delta.

After input of the machine data, the calculation or examination of the parameters is automatically started. The display changes over to "CALC" for a short time. If the verification of the entered machine data is successful, the guided commissioning procedure continues with the identification of the parameters (automatic measurement of further machine data).
Note the warnings and error messages displayed during guided commissioning.

- To ignore the warning messages, press the ENT key. The guided commissioning is continued. However, it is recommended that the data be checked and corrected if necessary.
- To correct the entered parameter values after the warning or error message, press the ESC key. Use the arrow keys to switch to the parameter value which is to be corrected.

Further machine data are measured while the drive is at a standstill. These measurements will be entered automatically in the relevant parameters by the parameter identification feature.

- Confirm the display "PAidE" by pressing the ENT key.
- Note the warnings or error messages upon completion of the parameter identification.

No signals at digital inputs S1IND (STOA) and S7IND (STOB). If signals were already applied at the beginning of the guided commissioning, the " StO " message is not displayed.

For release of the output stage, wiring of digital inputs S1IND (STOA) and S7IND (STOB) is required.

- Confirm the final "rEAdY" message by pressing the ENT key.

Canceling the operation with the ESC key or withdrawing the enable signal S1IND (STOA) or S7IND (STOP) results in an incomplete take-over of the values.

In the case of higher requirements as regards the accuracy of the speed/torque control, you should carry out the guided commissioning procedure once again under operating conditions because part of the machine data depends on the operating temperature.
During this procedure, confirm the rated machine values already entered.

- Confirm the "End" display by pressing the ENT key.

The guided commissioning of the frequency inverter is terminated via a reset and the initialization of the frequency inverter. The relay output X10 signals a fault.

After successful initialization of the frequency inverter, the factory-set parameter Actual Frequency 241 is displayed.
The drive is accelerated to the set Min. frequency 418 (default 3.50 Hz) by:

- Signals at digital inputs S1IND (STOA) and S7IND (STOB) and
- Start clockwise by rising signal edge at S2IND or Start anticlockwise by rising signal edge at S3IND

KFU 210- / 410-

6 Parameter

6.1 Description of parameters

The parameters are partly set via the guided commissioning. The following overviews refer to configurations 110 and $\mathbf{4 1 0}$. For additional configurations enabling setting of other parameters, refer to the Operating Instructions.

6.1.1 Adjustable parameters

Parameters relevant to KFU

No.	Description	Unit	Explanation
28	Control Level	-	These instructions describe the parameters on Control Level 1. Higher control level parameters are described in the Operating Instructions and should only be set by expert users.
30	Configuration	-	The basic function of the control inputs and outputs as well as the assignment of the software modules is selected by the configuration. The selection is made during the guided commissioning.
34	Program(ming)	-	The factory settings of all parameters is restored or a fault message is acknowledged (alternative to signal at digital input STO).
369	Motor Type	-	Selection of connected motor or transformer. The selection is considered in the test of the entered rated values and the guided commissioning.
370	Rated Voltage	V	Enter the voltage indicated on the type plate of the asynchronous motor.
371	Rated Current	A	Enter the rated current indicated on the type plate of the asynchronous motor for the selected circuit.
372	Rated Speed	U/min	Enter the motor speed indicated on the type plate of the asynchronous motor at rated frequency.
374	Rated Cosinus Phi	-	Enter the cos(\$) value indicated on the type plate of the asynchronous motor.
375	Rated Frequency	Hz	Enter the rated frequency (at parameterized rated speed) indicated on the type plate of the asynchronous motor.
376	Rated mech. Rated power	kW	Enter the power (in KW) indicated on the type plate of the asynchronous motor.
400	Switching frequency	Hz	The default switching frequency settings depend on configuration (Configuration 10: 2 kHz, Configuration 410: 4 kHz). Higher swithing frequencies reduce the motor noise, but reduce the output current (refer to technical data in Operating Instructions)
401	Min. Switching Frequency	Hz	Frequency to which the switching frequency is reduced in case the frequency inverter is overloaded.
418	Min. Frequency	Hz	The start command entered via the control unit or digital inputs S2IND, S3IND results in an acceleration of the drive to the minimum frequency.
419	Max. Frequency	Hz	The speed range of the drive is limited by the maximum output frequency of the frequency inverter.

${ }^{1)}$ Parameter is active in configurations with field-oriented control (FOR), e.g. 210, 410

NOTE

In the KP500 control unit, parameter numbers > 999 are shown in hexadecimal form (999, A00 ... B5 ... C66).

6.1.2 Actual value parameters

Parameters relevant to KFU

No.	Description	Unit	Explanation
211	R.m.s Current	A	Effective output current (motor current) of the frequency inverter calculated from the measurement in the three motor phases.
212	Output Voltage	V	Output voltage of frequency inverter modulated depending on the operating point of the motor
213	Active Power	kW	Calculated power of the asynchronous motor at the current operating point. Product of output voltage, current and cosine phi
240	Actual Speed	$1 / \mathrm{min}$	Speed of the asynchronous machine calculated using the machine model and the current load point.
241	Actual Frequency	Hz	The current output frequency of the frequency inverter or actual frequency of the drive calculated from the machine model.
259	Current Error	-	The cause of the error-switch-off and the corresponding error key are displayed. The current error is used for error diagnosis.
269	Warnings	-	If a critical condition is detected, this condition is indicated by the field WARN. The warning status can be displayed via parameter 269.
273	Application Warnings	-	An application-specific warning can be read. For detailed functions, refer to Operating Instructions.
310	Last Error	-	The fault message is displayed immediately when a fault occurs. The frequency inverter will try to acknowledge some faults automatically, other faults will be reset via digital input S1IND. The last fault code is saved for fault diagnosis.
783	SETUP adjusted motor parameters	-	The listed parameters (separated by commas) were changed by motor commissioning.

6.2 Parameter setting options

Parameter		Setting		
No.	Description	Min.	Max.	Factory setting
28	Control Level	,	3	1
370	Rated Voltage	0.17.UFUN ${ }^{1}{ }^{1}$	2.Ufun ${ }^{1 /}$	UFun ${ }^{1}$
371	Rated Current	$0.01 \cdot$ Ifun $^{1)}$	10.ü.lfun ${ }^{1)}$	Ifun ${ }^{11}$
372	Rated Speed	$96 \mathrm{~min}^{-1}$	$60000 \mathrm{~min}^{-1}$	n_{N}
374	Rated Cosinus Phi	0.01	1.00	$\cos (\varphi)_{N}$
375	Rated Frequency	10.00 Hz	599.00 Hz	50.00
376	Rated mech. Rated power	0.01.PFun ${ }^{11}$	10.PFun ${ }^{1}$	Pfun ${ }^{1}$
400	Switching frequency	2 kHz	16 kHz	$\begin{aligned} & 2 \mathrm{kHz}^{2 \mathrm{~A})} \\ & 4 \mathrm{kHz}^{2 \mathrm{~B})} \end{aligned}$
401	Min. Switching Frequency	2 kHz	16 kHz	2 kHz
418	Minimum frequency	0.00 Hz	599.00 Hz	$\begin{aligned} & 3.50 \mathrm{~Hz}^{3 \mathrm{~A})} \\ & \left.0.00 \mathrm{~Hz}^{3 \mathrm{~B}}\right) \end{aligned}$
419	Maximum frequency	0.00 Hz	599.00 Hz	50.00 Hz
420	Acceleration (Clockwise)	$0.00 \mathrm{~Hz} / \mathrm{s}$	$9999.99 \mathrm{~Hz} / \mathrm{s}$	$5.00 \mathrm{~Hz} / \mathrm{s}$
421	Deceleration (Clockwise)	$0.01 \mathrm{~Hz} / \mathrm{s}$	$9999.99 \mathrm{~Hz} / \mathrm{s}$	$5.00 \mathrm{~Hz} / \mathrm{s}$

572	Frequency Limit Motor Circuit Breaker	0%	300%	0%
722	Integral Time 1	0 ms	60000 ms	$-4)$
728	Current Limit	0.0 A	ü $\cdot I_{\text {FUN }}{ }^{1)}$	ü•IFUN ${ }^{1)}$

No.	Description	Setting	Factory setting
30	Configuration	110 - sensor-less control	110
		$410-\quad \begin{aligned} & \text { sensor-less field oriented } \\ & \text { regulation }\end{aligned}$	
		For further configurations (incl. servo motors), refer to Operating Instructions.	
34	Program(ming)	111 - Parameter transmission	110
		110 - Standard operation	
		123 - Reset	
		4444 - Reset parameter	
369	Motor Type	0 - Unknown	1
		1- Asynchronous	
		2- Synchronous	
		3- Reluctance	
		10 - Transformer	
452	Op. Mode Multifunction Input	1 - Voltage Input	1: Standard value in Configuration 110 and 410. Other configurations may deviate.
		2- Current Input	
		$3-\quad$ Digital input	
530	Op. Mode Digital Output 1	see Operation Instructions	
532	Op. Mode Digital Output 3		
553	Analog Operation MFO1		
570	Motor Temp. Operation Mode	$0-\quad$ off	0
		1- Therm.-Cont.: Warning only	
		2 - Error switch-off	
		$3-\quad$ Err.Switch-Off 1 min delayed	
		$4-\quad$ Err.Switch-Off 5 min delayed	
		$5-\quad$ Err.Switch-Off 10 min delayed	
571	Operation Mode Motor Circuit Breaker	see Operation Instructions	
645	Operation Mode Synchronization	see Operation Instructions	
651	Operation mode Autostart	$0-\quad$ off	0
		1- On	
670	Operation mode of voltage controller	0 - off	0
		1 - DC link limitation active	
		2 - Power regulation active	
		3 - Ud lim. \& mains support active	
		12 - \quadMains support active, without chopper	
		13 - \quadUdc-Lim. \& Mains Supp. active, Chopper not active	

${ }^{1)} I_{\text {fun, }} U_{\text {Fun, }}$ PFun: Rated values of frequency inverter (listed in Operating Instructions in "Technical Data"), ü: overload capability of frequency inverter
${ }^{2 A}$) in Configurations 1xx,
${ }^{2 B)}$ in Configurations 2xx, 4xx, 5xx, 6xx
${ }^{34)}$ in Configurations 1xx, 4xx, 6xx
${ }^{38}$) in Configurations $2 \mathrm{xx}, 5 \mathrm{xx}$ (see Operating Instructions)
${ }^{4)}$ machine-related

KFU 210- / 410-

7 Control unit messages

Status indication

LED				
green	red	Display	Description	Rotary field on motor
off	off	-	no supply voltage	no
on	on	-	initialization and self-test	no
flashing	off	RUN flashing	ready, no output signal	yes
on	off	RUN	operating message	yes
on	flashing	RUN + WARN	Operational message, current Warning 269	yo
flashing	flashing	RUN + WARN	Ready for operation, current Warning 269	no
off	flashing	FAULT flashing	Current Error 259 of frequency inverter	no
off	on	FAULT	Current Error 259, acknowledge fault	no

7.1 Warning and error messages during operation

The code displayed via parameter Warnings 269 can be composed of several messages.
Key A0088 signals warnings A0008 + A0080, for example.

Warning messages

Key	Meaning
A0000	No warning present.
A0001	Frequency inverter overloaded, warning code (A0002 or A0004)
A0002	Frequency inverter overload (60 s). Check load behavior.
A0004	Short-term overload (1 s). Check motor and application parameters.
A0008	Max. heat sink temperature reached, check cooling system and fan.
A0010	Max. interior temperature reached, check cooling system and fan.
A0020	Speed set point is limited by a controller.
A0080	Max. motor temperature reached, check motor and sensor.
A0100	Mains phase failure, check mains fuses and supply cable.
A0400	Limit frequency reached; output frequency is limited.
A4000	DC link voltage has reached the type-specific minimum.
A8000	Application-specific warning: For detailed functions, refer to Operating Instructions.

Current Error 259 and Last Error 310 make troubleshooting easier, an error code is displayed.
The error message can be acknowledged via the control unit buttons and STO input.

Error messages

Key		
F00	00	No fault has occurred.

Overload

F01	02	Frequency inverter overloaded (60 s), check load behavior
	03	Short-term overload (1 s), check motor and application parameters

Heat sink

F02	00	Heat sink temperature too high, check cooling system and fan.
	01	Temperature sensor defective or ambient temperature too low.

Interior

F03	00	Interior temperature too high, check cooling system and fan.
	01	Interior temperature too low, check control cabinet heating.

Motor connection

F04	00	Motor temperature too high or sensor defective, check connection S6IND.
	03	Phase failure, check motor and wiring.

Output current

F05	00	Overloaded, check load situation and ramps.
	03	Short circuit or earth fault, check motor and wiring.
	05	Asymmetric motor current, check current and wiring.
	06	Motor phase current too high, check motor and wiring.
	07	Message from phase monitoring, check motor and wiring.

DC-Link voltage

F07	00	DC link voltage too high, check deceleration ramps and connected brake resistor.
	01	DC link voltage too low, check mains voltage.
	02	Mains failure, check mains voltage and circuit.
	03	Phase failure, check mains fuse and circuit.
	04	Mains voltage UDC too high when turned on, check voltage.
05	Mains voltage BC too high when turned on, check voltage.	
	06	Mains voltage MC too high when turned on, check voltage.

Electronic voltage

F08	01	Electronics voltage too low, check control terminals.
	04	Electronic voltage too high, check wiring of control terminals.

Output frequency

F11	00	Output frequency too high, check control signals and settings.
	01	Max. frequency reached by control (voltage control), check deceleration ramps and connected brake resistor

Safety fuction STO

F12	01	Diagnosis error of function STO; at least one of the shut-down paths STOA and STOB is defective. Check the devices connected to the shut-down paths; check wiring and EMC.
	04	Software self-diagnosis has detected an internal error. Parameter Error Environment 1 describes the cause of the error.. Consult Küenle customer service.
	05	Fault message of 5-second monitoring. Shut-down paths STOA and STOB were not actuated at the same time, but with an offset of more than 5 seconds. Check addressing of shut-down paths or control of protection provision.

Motor connection

F13	00	Earth fault at output, check filter and cabling.
	10	Minimum current monitoring, check motor and wiring.

Control connection

F14	01	Reference value on multifunction input 1 faulty, check signal.
	07	Overcurrent on multifunction input 1, check signal.

7.2 Status messages during commissioning (SS...)

The following status messages are possible when Setup is run:

Status message		Meaning
SS000	OK	Auto set-up routine has been carried out.
SS001	PC Phase 1	The plausibility check (PC) of the motor data is active.
SS002	PC Phase 2	The calculation of dependent parameters is active.
SS003	STO	The parameter identification requires release on digital input STOA and STOB.
SS004	Parameter identification	The rated motor values are checked by the parameter identification feature.
SS010	Setup already active	The setup routine via the control panel is being carried out.
SS030	No Release	The parameter identification demands the controller release on digital input STOA and STOB.
SS031	Error - check P. 259	Error during the auto set-up routine. Check value of Current Error 259.
SS032	Warning Phase Asymmetry	The parameter identification feature diagnosed an unbalance during the measurements in the three motor phases.
SS099	Setup not carried out yet.	Self-setup has not yet been carried out.

7.3 Warning and error messages during commissioning (SA.../SF...)

Warning messages during guides commisioning

Code	Meaning / Measure
SA000	No warning message present.
SA001	The value of the parameter Rated Voltage 370 is out of the rated voltage range of the frequency inverter The maximum reference voltage is indicated on the nameplate of the frequency inverter.
SA002	For a three-phase motor, the calculated efficiency is in the limit range. Check the values entered for parameters Rated Voltage 370, Rated Current 371 and Rated Mech. Power 376.
SA003	The value entered for parameter Rated Cosinus Phi 374 is outside of the normal range (0.6 to 0.95). Check the value.
SA004	For three-phase motor, the calculated slip is in the limit range. Check the values for parameters Rated Speed 372 and Rated Frequency 375.

Warning messages after parameter identification

Code	Meaning / Measure
SA011	Current control setting, no typical value; see Operating Instructions
SA012	Current control setting, no typical value at 2 kHz; see Operating Instructions
SA014	Current control setting, no typical value at 4 kHz; see Operating Instructions
SA018	Current control setting, no typical value at 8 kHz; see Operating Instructions
SA021	Stator resistance (SA021) or rotor resistance (SA022) is very high. The following causes are possible: SA022 motor cable cross-section is not sufficient. The motor cables are too long. The motor cables are not connected correctly. The contacts are not in a proper condition (corrosion).
SA031	Shorten Motor Line using Switchfrequ. 16 kHz.
SA032	Shorten Motor Line using Switchfrequ. 12 kHz and higher.
SA033	Shorten Motor Line using Switchfrequ. 8 kHz and higher.
SA041	The slip speed was not determined correctly. Check the values for parameters Rated Speed 372 and Rated Frequency 375.
SA042	The slip speed was not determined correctly. Check the values for parameters Rated Speed 372 and Rated Frequency 375.

Warning messages after parameter identification

SA051	The machine data for star connection were entered, the motor, however, is connected in delta. For star operation, change the motor cable connection. For delta operation, check the entered rated motor values. Repeat the parameter identification
SA052	The machine data for delta connection were entered, the motor, however, is connected in star. For delta operation, change the motor cable connection. For star operation, check the entered rated motor values. Repeat the parameter identification
SA053	A phase asymmetry was measured. Check the cables at the terminals of the motor and the frequency inverter for proper connection and check the contacts for corrosion.
SA054	Resolver offset not adjusted.

Errow messages during guided commissioning

Code	Meaning / Measure
SF000	No Error
SF001	The value entered for parameter Rated Current 371 is too low. Correct the value.
SF002	The value for parameter Rated Current $\mathbf{3 7 1}$ is too high, referred to parameters Rated Mech. Power $\mathbf{3 7 6}$ and Rated Voltage 370. Correct the values.
SF003	The value entered for parameter Rated Cosinus Phi 374 is wrong (greater than 1 or smaller than 0.3). Correct the value.
SF004	The calculated slip frequency is negative. Correct the values entered for parameters Rated Speed $\mathbf{3 7 2}$ and Rated Frequency 375.
SF005	The calculated slip frequency is too high. Correct the values entered for parameters Rated Speed 372 and Rated Frequency 375.
SF006	The calculated total output of the drive is lower than the rated power. Correct the value entered for parameter Rated Mech. Power 376.
SF007	The set configuration is not supported by the guided commissioning. In these instructions, configurations 110 and 410 are described. Select one of these configurations for parameter Configuration 30.

Error messages after parameter identification

Code	Meaning / Measure
SF011	The main or leakage inductance measurement has failed because the motor has a high slip. Correct the SF012 rated motor values in parameters 370, 371, 372, 374, 375 and 376. Carry out the guided commissioning once again. In case an error message is displayed again, enter the value 110 for parameter Configuration 30 (sensorless regulation according to U/f-characteristic) if value 410 was set so far. Carry out the guided commissioning once again.
SF021 SF022 The measurement of the stator or rotor resistance did not deliver a plausible value. Check the cables at the terminals of the motor and the frequency inverter for proper connection and check the contacts for corrosion and safe contact. Repeat the parameter identification SF026 Setup aborted	

8 Technical Data

8.1 Size 1 - KFU 210 (0,25 to 1,1 kW, 230 V)

Type							
KFU 201			-1,6	-2,5	-3,0	-4,0	-5,4
Size					1		
Output, motorside							
Recommended motor shaft power	P	kW	0,25	0,37	0,55	0,75	1,1
Output current	I	A	1,6	2,5	3,0	4,0	5,4 ${ }^{\text {5 }}$
Long-term overload current (60 s)	1	A	3,2	5,0	4,5	6,0	7,3
Short-time overload current (1 s)	I	A	3,2	5,0	6,0	8,0	8,0
Output voltage	U	V	Maximum input voltage, three-phase				
Protection	-	-	Short circuit / earth fault proof				
Rotary field frequency	f	Hz	0 ... 599, depending on switching frequency				
Switching frequency	f	kHz	2, 4, 8, 12, 16				
Output, braking resistor							
min. braking resistor	R	Ω	100	100	100	100	100
$\begin{aligned} & \text { Recommended braking resistor } \\ & \left(U_{\mathrm{dBC}}=385 \mathrm{~V}\right) \end{aligned}$	R	Ω	430	300	230	160	115
Input, mains side							
$\begin{aligned} & \text { Mains current }{ }^{3} \text { 3ph } \\ & 1 \text { ph/N/PE; } 2 \mathrm{ph} \end{aligned}$	1	A	$\begin{aligned} & \hline 1,6 \\ & 2,9 \\ & \hline \end{aligned}$	$\begin{aligned} & 2,5 \\ & 4,5 \end{aligned}$	$\begin{gathered} \hline 3 \\ 5,4 \end{gathered}$	$\begin{gathered} \hline 4 \\ 7,2 \end{gathered}$	$\begin{aligned} & 5,5 \\ & \left.9,5^{2}\right) \\ & \hline \end{aligned}$
Mains voltage	U	V	184... 264				
Mains frequency	f	Hz	$45 \ldots 66$				
Fuse 3ph $1 \mathrm{ph} / \mathrm{N} ; 2 \mathrm{ph}$	1	A	$\begin{aligned} & \hline 6 \\ & 6 \end{aligned}$	$\begin{gathered} \hline 6 \\ 10 \end{gathered}$			$\begin{aligned} & \hline 10 \\ & 16 \end{aligned}$
UL-Typ 250 VAC RK5, 3ph 1ph/N; 2ph	1	A	$\begin{aligned} & \hline 6 \\ & 6 \\ & \hline \end{aligned}$	$\begin{gathered} 6 \\ \hline 10 \end{gathered}$			$\begin{aligned} & 10 \\ & 15 \end{aligned}$
Mechanical							
Dimensions	HxWxD	mm	$190 \times 60 \times 175$				
Weight approx..	m	kg	1,2				
Ingres protection rating	-	-	IP20 (EN60529)				
Connection terminals	A	mm^{2}	0,2 ... 1,5				
Form of assembly	-	-	vertical				
Ambient conditions							
Energy dissipation (2 kHz switching frequency)	P	W	32	38	43	53	73
Coolant temperature	T_{n}	${ }^{\circ} \mathrm{C}$	0 ... 40 (3K3 DIN IEC 721-3-3)				
Storage temperature	TL	${ }^{\circ} \mathrm{C}$	-25 ... 55				
Transport temperature	T_{T}	${ }^{\circ} \mathrm{C}$	-25 ... 70				
Rel. humidity	-	\%	$15 . . .85$; not condensing				

If required by the customer, the switching frequency may be increased if the output current is reduced at the same time.
Comply with the applicable standards and regulations for this operating point.
Output current ${ }^{6}$)

Frequency inverter nominal power	Switching frequency				
	2 kHz	4 kHz	8 kHz	12 kHz	16 kHz
0,25 kW	1,6 A	1,6 A	1,6 A	1,3 A	1,1 A
0,37 kW	2,5 A	2,5 A	2,5 A	2,1 A	1,7 A
0,55 kW	3,0 A	3,0 A	3,0 A	2,5 A	2,0 A
0,75 kW	4,0 A	4,0 A	4,0 A	3,4 A	2,7 A
1,1 kW	5,4 A ${ }^{\text {2) }}$	5,4 ${ }^{\text {2) 5) }}$	5,4 A ${ }^{\text {2 }}$)	4,5 $\mathrm{A}^{2)} 5$	3,7 A ${ }^{\text {5 }}$

${ }^{1)}$ Three-phase connection requires a commutating choke.
${ }^{2)}$ One- and two-phase connection requires a commutating choke.
${ }^{3)}$ Mains current with relative mains impedance $\geq 1 \%$ (see chapter,Electrical installation")
${ }^{4)}$ Maximum output current $=9.5 \mathrm{~A}$ with single-phase and two-phase connection
${ }^{5)}$ Reduction of switching frequency in thermal limit range
${ }^{6)}$ Maximum current in continuous operation

8.2 Size 2 KFU 210 (0,25 to $\mathbf{1 , 1}$ kW, 230 V)

Type					
KFU 201			-7,0	-9,5	-12,5
Output, motorside					
Recommended motor shaft power	P	kW	1,5	2,2	3,0 4)
Output current	I	A	7,0	9,5	12,5 4) 5)
Long-term overload current (60 s)	1	A	10,5	14,3	16,2
Short-time overload current (1 s)	1	A	14,0	19,0	19,0
Output voltage	U	V	Maximum input voltage, three-phase		
Protection	-	-	Short circuit / earth fault proof		
Rotary field frequency	f	Hz	$0 \ldots 599$, depending on switching frequency		
Switching frequency	f	kHz	2, 4, 8, 12, 16		
Output, braking resistor					
min. braking resistor	R	Ω	37	37	37
Recommended braking resistor $\left(U_{\mathrm{dBC}}=385 \mathrm{~V}\right)$	R	Ω	75	55	37
Input, mains side					
Mains current ${ }^{3)}$ 3ph 1ph/N/PE; 2ph	1	A	$\begin{gathered} 7 \\ 13,2 \end{gathered}$	$\begin{gathered} 9,5 \\ 16,52) \end{gathered}$	$\begin{gathered} \hline 10,51) \\ 16,52) 4) \end{gathered}$
Mains voltage	U	V	$184 . . .264$		
Mains frequency	f	Hz	$45 . .66$		
Fuse 3ph 1ph/N; 2ph	1	A	$\begin{aligned} & \hline 10 \\ & 16 \end{aligned}$	$\begin{aligned} & \hline 16 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 16 \\ & 20 \\ & \hline \end{aligned}$
UL-Typ 250 VAC RK5, 3ph 1ph/N; 2ph	1	A	$\begin{aligned} & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 15 \\ & 20 \end{aligned}$	$\begin{aligned} & 15 \\ & 20 \end{aligned}$
Mechanical					
Dimensions	HxWxD	mm	$250 \times 60 \times 175$		
Weight approx..	m	kg	1,6		
Ingres protection rating	-	-	IP20 (EN60529)		
Connection terminals	A	$\begin{array}{\|c\|} \hline \mathrm{mm} \\ 2 \\ \hline \end{array}$	0,2 ... 1,5		
Form of assembly	-	-	vertical		
Ambient conditions					
$\begin{array}{l}\text { Energy } \\ (2 \mathrm{kHz} \text { switching frequency) }\end{array}$	P	W	84	115	170
Coolant temperature	Tn	${ }^{\circ} \mathrm{C}$	$0 \ldots 40$ (3K3 DIN IEC 721-3-3)		
Storage temperature	TL	${ }^{\circ} \mathrm{C}$	-25 ... 55		
Transport temperature	TT	${ }^{\circ} \mathrm{C}$	-25 ... 70		
Rel. humidity	-	\%	$15 . . .85$; not condensing		

If required by the customer, the switching frequency may be increased if the output current is reduced at the same time. Comply with the applicable standards and regulations for this operating point.
Output current ${ }^{6)}$

Frequency inverter nominal power	Switching frequency				
	2 kHz	4 kHz	8 kHz	12 kHz	16 kHz
$1,5 \mathrm{~kW}$	$7,0 \mathrm{~A}$	$7,0 \mathrm{~A}$	$7,0 \mathrm{~A}$	$5,9 \mathrm{~A}$	$4,8 \mathrm{~A}$
$2,2 \mathrm{~kW}$	$9,5 \mathrm{~A} 2)$	$9,5 \mathrm{~A} 2)$	$9,5 \mathrm{~A} 2)$	$8,0 \mathrm{~A} 2)$	$6,5 \mathrm{~A}$
$3,0 \mathrm{~kW} 2) 4)$	$12,5 \mathrm{~A} \mathrm{1)}$	$12,5 \mathrm{~A} \mathrm{1)} \mathrm{5)}$	$12,5 \mathrm{~A} \mathrm{1)} \mathrm{5)}$	$10,5 \mathrm{~A} \mathrm{1)} 5)$	$8,5 \mathrm{~A} \mathrm{5)}$

1) Three-phase connection requires a commutating choke.
2) One- and two-phase connection requires a commutating choke.
3) Mains current with relative mains impedance $\geq 1 \%$ (see chapter„Electrical installation")
4) Maximum output current $=9.5 \mathrm{~A}$ with single-phase and two-phase connection
5) Reduction of switching frequency in thermal limit range
6) Maximum current in continuous operation

8.3 Size 3 and 4 KFU 210 (4,0 to 9,2 kW, 230 V)

Type						
KFU 210			-18,0	-22,0	-32,0	-35,0
Size			3		4	
Output motorside						
Recommended motor shaft power	P	kW	4,0	5,5 ${ }^{\text {4) }}$	7,54)	9,24)
Output current	I	A	18,0	22,0	32,0	35,0
Long-term overload current (60 s)	1	A	26,3	30,3	44,5	51,5
Short-time overload current (1 s)	I	A	33,0	33,0	64,0	64,0
Output voltage	U	V	Maximum input voltage, three-phase			
Protection	-	-	Short circuit / earth fault proof			
Rotary field frequency	f	Hz	$0 \ldots 599$, depending on switching frequency			
Switching frequency	f	kHz	2, 4, 8, 12, 16			
Output, braking resistor						
min. Bremswiderstand	R	Ω	24	24	12	12
Empfohlener Bremswiderstand $\left(U_{\mathrm{dBC}}=385 \mathrm{~V}\right)$	R	Ω	30	24	16	12
Input main side						
$\begin{aligned} & \text { Mains current }{ }^{3)} 3 \mathrm{ph} \\ & 1 \mathrm{ph} / \mathrm{N} ; 2 \mathrm{ph} \end{aligned}$	1	A	$\begin{gathered} 18 \\ 28^{217)} \\ \hline \end{gathered}$	$\begin{gathered} \hline 20^{1)} \\ -4) \\ \hline \end{gathered}$	$\begin{gathered} 28,2^{11} \\ -4) \end{gathered}$	$\begin{gathered} \hline 35,6^{11} \\ -4) \\ \hline \end{gathered}$
Mains voltage	U	V	184 ... 264			
Mains frequncy	f	Hz	$45 \ldots 66$			
Fuse 3ph 1ph/N; 2ph	1	A	$\begin{aligned} & 25 \\ & 35 \end{aligned}$	$\begin{array}{r}25 \\ -4) \\ \hline\end{array}$	$\begin{array}{r}35 \\ -4) \\ \hline\end{array}$	$\begin{array}{r}50 \\ -4) \\ \hline\end{array}$
Mechanical						
Dimensions	HxWxD	mm	$250 \times 100 \times 200$		250x125×200	
Weight approx.	m	kg	3,0		3,7	
Ingress protection rating	-	-	IP20 (EN60529)			
Connection terminals	A	mm^{2}	0,2 ... 6		0,2 .. 16	
Form of assembly	-	-	vertical			
Ambient conditions						
Energy dissipation (2 kHz switching frequency)	P	W	200	225	310	420
Coolant temperature	T_{n}	${ }^{\circ} \mathrm{C}$	0 ... 40 (3K3 DIN IEC 721-3-3)			
Storage temperature	TL	${ }^{\circ} \mathrm{C}$	-25... 55			
Transport temperature	TT	${ }^{\circ} \mathrm{C}$	-25 ... 70			
Rel. humidity	-	\%	$15 . . .85$; not condensing			

If required by the customer, the switching frequency may be increased if the output current is reduced at the same time. Comply with the applicable standards and regulations for this operating point.

Output current ${ }^{6)}$

Frequency inverter nominal power	Switching frequency				
	2 kHz	4 kHz	8 kHz	12 kHz	16 kHz
$4,0 \mathrm{~kW}$	18,0 A ${ }^{2}$	$18,0 \mathrm{~A}^{2)}$	18,0 A ${ }^{2}$	$15,1 \mathrm{~A}^{2)}$	12,2 A
5,5 kW ${ }^{4}$	23,0 A ${ }^{1)}$	22,7 A ${ }^{\text {1), }}$)	22,0 ${ }^{\text {1), }}$)	18,5 A ${ }^{\text {5 }}$	15,0 A ${ }^{\text {5 }}$
7,5 kW ${ }^{4}$	32,0 A ${ }^{1)}$	32,0 A ${ }^{\text {1) }}$	32,0 A ${ }^{\text {1) }}$	26,9 A ${ }^{1)}$	21,8 A
9,2 $\mathrm{kW}^{4)}$	40,0 A ${ }^{1)}$	38,3 ${ }^{\text {1), }}$)	35,0 ${ }^{\text {1), }}$)	29,4 ${ }^{\text {1), }}$)	23,8 ${ }^{5}$)

${ }^{1)}$ Three-phase connection requires a commutating choke.
${ }^{2)}$ One- and two-phase connection requires a commutating choke.
${ }^{3)}$ Mains current with relative mains impedance $\geq 1 \%$ (see chapter,"Electrical installation")
${ }^{4)}$ Three-phase connection permissible only.
${ }^{5)}$ Reduction of switching frequency in thermal limit range
${ }^{6}$) Maximum current in continuous operation
${ }^{\text {7) }}$ Device for single-phase mains connection is not included in the product catalog. However, it is available upon request.

8.4 Size 1 KFU 410 (1,85 to $4,0 \mathrm{~kW}, 400$ V)

Type								
KFU 410			-1,0	-1,6	-1,8	-2,4	-3,2	-3,8
Size			1					
Output motorside								
Recommended motor shaft power	P	kW	0,25	0,37	0,55	0,75	1,1	1,5
Output current	I	A	1,0	1,6	1,8	2,4	3,2	3,8 ${ }^{\text {3) }}$
Long-term overload current (60 s)	1	A	2,0	3,2	2,7	3,6	4,8	5,7
Short-time overload current (1 s)	1	A	2,0	3,2	3,6	4,8	6,4	7,6
Output voltage	U	V	Maximum input voltage, three-phase					
Protection	-	-	Short circuit / earth fault proof					
Rotary field frequency	f	Hz	$0 \ldots 599$, depending on switching frequency					
Switching frequency	f	kHz	2, 4, 8, 12, 16					
Output, braking resistor								
Min. braking resistance	R	Ω	300	300	300	300	300	300
Recommended braking resistor $\left(U_{\mathrm{dBC}}=770 \mathrm{~V}\right)$	R	Ω	930	930	930	634	462	300
Input, mains side								
Power supply current ${ }^{\text {2 }}$	1	A	1,0	1,6	1,8	2,4	2,8 ${ }^{11}$	3,3 ${ }^{1)}$
Mains voltage	U	V	320 ... 528					
Mains frequency	f	Hz	$45 \ldots 66$					
Fuses	I	A	6					
UL type 600 VAC RK5	I	A	6					
Mechanical								
Dimensions	HxWxD	mm	$190 \times 60 \times 175$					
Weight approx.	m	kg	1,2					
Ingress protection rating	-	-	IP20 (EN60529)					
Connection terminals	A	mm^{2}	0,2 ... 1,5					
Form of assembly	-	-	vertical					
Ambient conditions								
Energy dissipation (2 kHz switching frequency)	P	W	30	35	40	46	58	68
Coolant temperature	T_{n}	${ }^{\circ} \mathrm{C}$	0 ... 40 (3K3 DIN IEC 721-3-3)					
Storage temperature	TL	${ }^{\circ} \mathrm{C}$	-25 ... 55					
Transport temperature	T_{T}	${ }^{\circ} \mathrm{C}$	-25... 70					
Rel. humidity	-	\%	$15 . .885$, not condensing					

If required by the customer, the switching frequency may be increased if the output current is reduced at the same time. Comply with the applicable standards and regulations for this operating point.
Output current ${ }^{4)}$

Frequency inverter nominal power	Switching frequency				
	2 kHz	4 kHz	8 kHz	12 kHz	16 kHz
$0,25 \mathrm{~kW}$	$1,0 \mathrm{~A}$	$1,0 \mathrm{~A}$	$1,0 \mathrm{~A}$	$0,8 \mathrm{~A}$	$0,7 \mathrm{~A}$
$0,37 \mathrm{~kW}$	$1,6 \mathrm{~A}$	$1,6 \mathrm{~A}$	$1,6 \mathrm{~A}$	$1,3 \mathrm{~A}$	$1,1 \mathrm{~A}$
$0,55 \mathrm{~kW}$	$1,8 \mathrm{~A}$	$1,8 \mathrm{~A}$	$1,8 \mathrm{~A}$	$1,5 \mathrm{~A}$	$1,2 \mathrm{~A}$
$0,75 \mathrm{~kW}$	$2,4 \mathrm{~A}$	$2,4 \mathrm{~A}$	$2,4 \mathrm{~A}$	$2,0 \mathrm{~A}$	$1,6 \mathrm{~A}$
$1,1 \mathrm{~kW}$	$3,2 \mathrm{~A}^{1)}$	$3,2 \mathrm{~A}^{1)}$	$3,2 \mathrm{~A}^{1)}$	$2,7 \mathrm{~A}^{1)}$	$2,2 \mathrm{~A}$
$1,5 \mathrm{~kW}^{1)}$	$3,8 \mathrm{~A}$	$3,8 \mathrm{~A}^{3)}$	$3,8 \mathrm{~A}^{3)}$	$3,2 \mathrm{~A}^{3)}$	$2,6 \mathrm{~A}^{3)}$

${ }^{1)}$ Three-phase connection requires a commutating choke.
${ }^{2)}$) Mains current with relative mains impedance $\geq 1 \%$ (see chapter,"Electrical installation")
${ }^{3)}$ Reduction of switching frequency in thermal limit range
${ }^{4}$) Maximum current in continuous operation

8.5 Size 2 KFU 410 (1,85 to 4,0 kW, 400 V)

Type						
KFU 410			-4,2	-5,8	-7,8	-9,0
Size			2			
Output motor side						
Recommended motor shaft power	P	kW	1,85	2,2	3,0	4,0
Output current	I	A	4,2	5,8	7,8	9,0 ${ }^{\text {3) }}$
Long-term overload current (60 s)	1	A	6,3	8,7	11,7	13,5
Short-time overload current (1 s)	I	A	8,4	11,6	15,6	18,0
Output voltage	U	V	Maximum input voltage, three-phase			
Protection	-	-	Short circuit / earth fault proof			
Rotary field frequency	f	Hz	$0 \ldots 599$, depending on switching frequency			
Switching frequency	f	kHz	2, 4, 8, 12, 16			
Output, braking resistor						
Min. braking resistance	R	Ω	136	136	136	92
Recommended braking resistor $\left(U_{\mathrm{dBC}}=770 \mathrm{~V}\right)$	R	Ω	300	220	148	106
Input, mains side						
Power supply current ${ }^{2)}$	1	A	4,2	5,8	6,8 ${ }^{1)}$	$7,8^{1)}$
Mains voltage	U	V	$320 . . .528$			
Mains frequency	f	Hz	$45 . . .66$			
Fuses	I	A	6	10		
UL type 600 VAC RK5	1	A	6		10	
Mechanical						
Dimensions	HxWxD	mm	$250 \times 60 \times 175$			
Weight approx.	m	kg	1,6			
Ingress protection rating	-	-	IP20 (EN60529)			
Connection terminals	A	mm^{2}	0,2 ... 1,5			
Form of assembly	-	-	vertical			
Ambient conditions						
Energy dissipation (2 kHz switching frequency)	P	W	68	87	115	130
Coolant temperature	T_{n}	${ }^{\circ} \mathrm{C}$	0 ... 40 (3K3 DIN IEC 721-3-3)			
Storage temperature	TL	${ }^{\circ} \mathrm{C}$	-25 ... 55			
Transport temperature	T_{T}	${ }^{\circ} \mathrm{C}$	-25... 70			
Rel. humidity	-	\%	$15 \ldots 85$, nicht betauend			

If required by the customer, the switching frequency may be increased if the output current is reduced at the same time. Comply with the applicable standards and regulations for this operating point.
Output current 4)

Frequency inverter nominal power	Switching frequency				
	2 kHz	4 kHz	8 kHz	12 kHz	16 kHz
$1,85 \mathrm{~kW}$	$4,2 \mathrm{~A}$	$4,2 \mathrm{~A}$	$4,2 \mathrm{~A}$	$3,5 \mathrm{~A}$	$2,9 \mathrm{~A}$
$2,2 \mathrm{~kW}$	$5,8 \mathrm{~A}$	$5,8 \mathrm{~A}$	$5,8 \mathrm{~A}$	$4,9 \mathrm{~A}$	$3,9 \mathrm{~A}$
$3,0 \mathrm{~kW}$	$7,8 \mathrm{~A}^{1)}$	$7,8 \mathrm{~A}^{1)}$	$7,8 \mathrm{~A}^{1)}$	$6,6 \mathrm{~A}^{1)}$	$5,3 \mathrm{~A}$
$4,0 \mathrm{~kW}$	$9,0 \mathrm{~A}^{1)}$	$9,0 \mathrm{~A}^{1(3)}$	$9,0 \mathrm{~A}^{1(3)}$	$7,6 \mathrm{~A}^{1(3)}$	$6,1 \mathrm{~A}^{3)}$

1) Three-phase connection requires a commutating choke.
2) Mains current with relative mains impedance $\geq 1 \%$ (see chapter,Electrical installation")
3) Reduction of switching frequency in thermal limit range
4) Maximum current in continuous operation

8.6 Size 3 and 4 KFU 410 (5,5 to 15,0 kW, 400 V)

Type							
KFU 410			-14,0	-18,0	-22	-25	-32
Size			3			4	
Output, motor side							
Recommended motor shaft power	P	kW	5,5	7,5	9,2	11,0	15,0
Output current	I	A	14,0	18,0	22,0 ${ }^{3}$	25,0	32,0
Long-term overload current (60 s)	1	A	21,0	26,3	30,3	37,5	44,5
Short-time overload current (1 s)	1	A	28,0	33,0	33,0	50,0	64,0
Output voltage	U	V	Maximum input voltage, three-phase				
Protection	-	-	Short circuit / earth fault proof				
Rotary field frequency	f	Hz	$0 \ldots 599$, depending on switching frequency				
Switching frequency	f	kHz	2, 4, 8, 12, 16				
Output, braking resistor							
Min. braking resistance	R	Ω	48	48	48	32	32
Recommended braking resistor $\left(U_{\mathrm{dBC}}=770 \mathrm{~V}\right)$	R	Ω	80	58	48	48	32
Input, mains side							
Mains current ${ }^{2)}$	1	A	14,2	15,8 ${ }^{\text {1) }}$	20,0 ${ }^{1)}$	26,0	28,2 ${ }^{1)}$
Mains voltage	U	V	320 ... 528				
Mains frequency	f	Hz	$45 . . .66$				
Fuses	1	A	16	25		35	
UL type 600 VAC RK5	1	A	20			30	40
Mechanical							
Dimensions	HxWxD	mm	$250 \times 100 \times 200$			250x125×200	
Weight approx.	m	kg	3,0			3,7	
Ingress protection rating	-	-	IP20 (EN60529)				
Connection terminals	A	mm^{2}	0,2 ... 6			0,2 ... 16	
Form of assembly	-	-	vertical				
Ambient conditions							
Energy dissipation (2 kHz switching frequency)	P	W	145	200	225	240	310
Coolant temperature	T_{n}	${ }^{\circ} \mathrm{C}$	0 ... 40 (3K3 DIN IEC 721-3-3)				
Storage temperature	TL	${ }^{\circ} \mathrm{C}$	-25... 55				
Transport temperature	TT	${ }^{\circ} \mathrm{C}$	-25 ... 70				
Rel. humidity	-	\%	$15 . .85$, not condensing				

If required by the customer, the switching frequency may be increased if the output current is reduced at the same time. Comply with the applicable standards and regulations for this operating point.

Output current 4)
Output current 4)

Frequency inverter nominal power	Switching frequency				
	2 kHz	4 kHz	8 kHz	12 kHz	16 kHz
$5,5 \mathrm{~kW}$	$14,0 \mathrm{~A}$	$14,0 \mathrm{~A}$	$14,0 \mathrm{~A}$	$11,8 \mathrm{~A}$	$9,5 \mathrm{~A}$
$7,5 \mathrm{~kW}$	$18,0 \mathrm{~A}^{1)}$	$18,0 \mathrm{~A}^{1}$	$18,0 \mathrm{~A}^{1}$	$15,1 \mathrm{~A}^{1)}$	$12,2 \mathrm{~A}$
$9,2 \mathrm{~kW}{ }^{1)}$	$23,0 \mathrm{~A}$	$22,7 \mathrm{~A}^{3}$	$22,0 \mathrm{~A}^{3}$	$\left.18,5 \mathrm{~A}^{3}\right)$	$15,0 \mathrm{~A}^{3}$
11 kW	$25,0 \mathrm{~A}$	$25,0 \mathrm{~A}^{1}$	$25,0 \mathrm{~A}$	$21,0 \mathrm{~A}$	$17,0 \mathrm{~A}$
15 kW	$32,0 \mathrm{~A}^{1)}$	$32,0 \mathrm{~A}^{1)}$	$32,0 \mathrm{~A}^{1)}$	$26,9 \mathrm{~A}^{1)}$	$21,8 \mathrm{~A}$

8.7 Size 5 KFU 410 (18,5 to $\mathbf{3 0 , 0} \mathrm{kW}, 400$ V)

Typ					
KFU 410			-40	-45	-60
Size			5		
Output, motor side					
Recommended motor shaft power	P	kW	18,5	22,0	30,0
Output current	I	A	40,0	45,0	60,0
Long-term overload current (60 s)	I	A	60,0	67,5	90,0
Short-time overload current (1 s)	1	A	80,0	90,0	120,0
Output voltage	U	V	Maximum input voltage, three-phase		
Protection	-	-	Short circuit / earth fault proof		
Rotary field frequency	f	Hz	0 ... 599, depending on switching frequency		
Switching frequency	f	kHz	2, 4, 8		
Output, braking resistor					
Min. braking resistance	R	Ω	16		
$\begin{aligned} & \text { Recommended braking resistor } \\ & \left(U_{d B C}=770 \mathrm{~V}\right) \end{aligned}$	R	Ω	26	22	16
Input, mains side					
Mains current ${ }^{\text {2) }}$	1	A	42,0	50,0	$58,0^{1)}$
Mains voltage	U	V	320 ... 528		
Mains frequency	f	Hz	$45 . . .66$		
Fuses	I	A	50		63
UL type 600 VAC RK5	I	A	50		60
Mechanical					
Dimensions	HxWxD	mm	$250 \times 200 \times 260$		
Weight approx.	m	kg	8		
Ingress protection rating	-	-	IP20 (EN60529)		
Connection terminals	A	mm^{2}	to 25		
Form of assembly	-	-	vertical		
Ambient conditions					
Energy dissipation (2 kHz switching frequency)	P	W	445	535	605
Coolant temperature	T_{n}	${ }^{\circ} \mathrm{C}$	0 ... 40 (3K3 DIN IEC 721-3-3)		
Storage temperature	TL	${ }^{\circ} \mathrm{C}$	-25 ... 55		
Transport temperature	TT	${ }^{\circ} \mathrm{C}$	-25... 70		
Rel. humidity	-	\%	$15 . .85$, not condensing		

If required by the customer, the switching frequency may be increased if the output current is reduced at the same time. Comply with the applicable standards and regulations for this operating point.
Output current ${ }^{3)}$

Frequency inverter nominal power	Switching frequency		
	2 kHz	4 kHz	8 kHz
$18,5 \mathrm{~kW}$	$40,0 \mathrm{~A}$	$40,0 \mathrm{~A}$	$40,0 \mathrm{~A}$
22 kW	$45,0 \mathrm{~A}$	$45,0 \mathrm{~A}$	$45,0 \mathrm{~A}$
30 kW	$60,0 \mathrm{~A}^{1)}$	$60,0 \mathrm{~A}^{1)}$	$60,0 \mathrm{~A}^{1)}$

[^0]
8.8 Size 6 KFU 410 (37 to $65 k W$, 400 V)

Typ						
KFU 410			-75	-90	-110	-125
Size			6			
Output, motorside						
Recommended motor shaft power	P	kW	37,0	45,0	55,0	65,0
Output current	I	A	75,0	90,0	110,0	125,0
Long-term overload current (60 s)	I	A	112,5	135,0	165,0	187,5
Short-time overload current (1 s)	1	A	150,0	180,0	220,0	250,0
Output voltage	U	V	Maximum input voltage, three-phase			
Protection	-	-	Short circuit / earth fault proof			
Rotary field frequency	f	Hz	0 ... 599, depending on switching frequency			
Switching frequency	f	kHz	2, 4, 8			
Output, bgranking resistor ${ }^{5)}$						
Min. braking resistance	R	Ω	7,5			
Recommended braking resistor $\left(U_{d B C}=770 \mathrm{~V}\right)$	R	Ω	13	11	9	7,5
Input, mains side						
Netzstrom ${ }^{2)}$	1	A	87,0	104,0	$105,0^{1)}$	120,0 ${ }^{1)}$
Netzspannung	U	V	$320 . . .528$			
Netzfrequenz	f	Hz	$45 \ldots 66$			
Sicherungen	1	A	100	125	125	125
UL-Typ 600 VAC RK5	1	A	100	125	125	125
Mechanik						
Dimensions	HxWxD	mm	$400 \times 275 \times 260$			
Weight approx.	m	kg	20			
Ingress protection rating	-	-	IP20 (EN60529)			
Connection terminals	A	mm ${ }^{2}$	up to 70			
Form of assembly	-	-	vertical			
Ambient conditions						
Energy dissipation (2 kHz switching frequency)	P	W	665	830	1080	1255
Coolant temperature	T_{n}	${ }^{\circ} \mathrm{C}$	0 ... 40 (3K3 DIN IEC 721-3-3)			
Storage temperature	TL	${ }^{\circ} \mathrm{C}$	-25... 55			
Transport temperature	T_{T}	${ }^{\circ} \mathrm{C}$	-25 ... 70			
Rel. humidity	-	\%	$15 . .85$, not condensing			

If required by the customer, the switching frequency may be increased if the output current is reduced at the same time.
Comply with the applicable standards and regulations for this operating point.
Output current ${ }^{4)}$

Frequency inverter nominal power	Switching frequency		
	2 kHz	4 kHz	8 kHz
37 kW	$75,0 \mathrm{~A}$	$75,0 \mathrm{~A}$	$75,0 \mathrm{~A}$
45 kW	$90,0 \mathrm{~A}$	$90,0 \mathrm{~A}$	$90,0 \mathrm{~A}$
55 kW	$110,0 \mathrm{~A}^{1)}$	$110,0 \mathrm{~A}^{1)}$	$110,0 \mathrm{~A}^{1)}$
65 kW	$125,0 \mathrm{~A}^{1 / 3)}$	$125,0 \mathrm{~A}^{1 / 3)}$	$125,0 \mathrm{~A}^{1 / 3)}$

${ }^{1)}$ Three-phase connection requires a commutating choke.
${ }^{2)}$ Mains current with relative mains impedance $\geq 1 \%$ (see chapter,,Electrical installation")
${ }^{3)}$ Reduction of switching frequency in thermal limit range
${ }^{4}$) Maximum current in continuous operation
${ }^{5)}$ As an option, the frequency inverter of this size is available without internal brake transistor.

8.9 Size 7 KFU 410 (75 to 132 kW, 400 V)

Type						
KFU 410			-150	-180	-210	-250
Size			7			
Output, motor side						
Recommended motor shaft power	P	kW	75	90	110	132
Output current	I	A	150	180	210	250
Long-term overload current (60 s)	I	A	225	270	315	332
Short-time overload current (1 s)	1	A	270	325	375	375
Output voltage	U	V	Maximum input voltage, three-phase			
Protection	-	-	Short circuit / earth fault proof			
Rotary field frequency	f	Hz	0 ... 599, depending on switching frequency			
Switching frequency	f	kHz	2, 4, 8			
Output, braking resistor (external) ${ }^{\text {5 }}$						
Mit braking resistance	R	Ω	4,5		3,0	
$\begin{aligned} & \text { Recommended braking resistor } \\ & \left(U_{d B C}=770 \mathrm{~V}\right) \end{aligned}$	R	Ω	6,1	5,1	4,1	3,8
Input mains side						
Mains current ${ }^{2)}$	1	A	$143{ }^{1)}$	$172{ }^{1)}$	$208{ }^{1)}$	$249{ }^{1)}$
Mains voltage	U	V	$320 \ldots 528$			
Mains frequency	f	Hz	$45 . .66$			
Fuses	1	A	160	200	250	315
Fuses as per UL ${ }^{6}$ Cooper Bussmann	Typ		FWH-250A	FWH-300A	FWH-350A	FWH-400A
Mechanical						
Dimensions	HxWxD	mm	$510 \times 412 \times 351$			
Weight approx.	m	kg	45		48	
Ingress protection rating	-	-	IP20 (EN60529)			
Connection terminals	A	mm^{2}	up to 2×95			
Form of assembly	-	-	vertical			
Ambient conditions						
$\begin{array}{\|l} \hline \text { Energy dissipation } \\ (2 \mathrm{kHz} \text { switching frequency) } \\ \hline \end{array}$	P	W	1600	1900	2300	2800
Coolant temperature	Tn	${ }^{\circ} \mathrm{C}$	0 ... 40 (3K3 DIN IEC 721-3-3)			
Storage temperature	TL	${ }^{\circ} \mathrm{C}$	-25 ... 55			
Transport temperature	TT	${ }^{\circ} \mathrm{C}$	-25... 70			
Rel. humidity	-	\%	$15 . . .85$, not condensing			

If required by the customer, the switching frequency may be increased if the output current is reduced at the same time. Comply with the applicable standards and regulations for this operating point.
Output current ${ }^{4}$

Frequency inverter nominal power	Switching frequency		
	2 kHz	4 kHz	8 kHz
75 kW	150 A	150 A	150 A
90 kW	180 A	180 A	180 A
110 kW	210 A	210 A	$210 \mathrm{~A}^{3}$
132 kW	250 A	250 A	$250 \mathrm{~A}^{3)}$

${ }^{1)}$ Three-phase connection requires a commutating choke.
2) Mains current with relative mains impedance $\geq 1 \%$ (see chapter,Electrical installation")
${ }^{3)}$ Reduction of switching frequency in thermal limit range
${ }^{4)}$ Maximum current in continuous operation
${ }^{5)}$ As an option, the frequency inverter of this size is available without internal brake transistor.
${ }^{6)}$ For UL-compliant fusing, the specified Cooper Bussmann fuses must be used. Other fuses must not be used for ULconforming fusing.

8.10 Size 8 KFU 410 (160 to $400 \mathrm{~kW}, 400 \mathrm{~V}$)

Type								
KFU 410			-305	-380	-475	-595	-645	-735
Size			8					
Output, motor side								
Recommended motor shaft power	P	kW	160	200	250	315	355	400
Output current	1	Aeff.	305	380	475	595	645	735
Long-term overload current (60 s) ${ }^{\text {1) }}$	1	$\mathrm{A}_{\text {eff }}$	460	570	715	895	970	1100
Short-term overload current (1 s) ${ }^{\text {2) }}$	I	$\mathrm{A}_{\text {eff }}$	550	685	855	1070	1160	1330
Output voltage	U	$V_{\text {eff }}$	Maximum input voltage, three-phase					
Protection	-	-	Short circuit / earth fault proof					
Rotary field frequency	f	Hz	$\pm 500 \mathrm{~Hz}{ }^{\text {3 }}$					
Switching frequency	f	kHz	2, 4, ${ }^{4}{ }^{4}$					
Output, braking restor (external) ${ }^{\text {5 }}$								
Min. braking resistance	R	Ω	1,20	1,20	1,20	0,80	0,80	0,80
$\begin{aligned} & \text { Recommended braking resistor } \\ & \left(U_{\mathrm{dBC}}=770 \mathrm{~V}\right) \end{aligned}$	R	Ω	1,50	1,50	1,50	1,00	1,00	1,00
Input, mains side								
Mains current ${ }^{6)}$	1	A	280	350	440	550	620	690
Mains voltage	U	V	320 ... 528					
Mains frequency	f	Hz	$45 \ldots 66$					
Fuses ${ }^{7)}$	I	A	400	500	630	700	800	900
Fuses as per UL ${ }^{8)}$ in preparation	Typ		$\begin{gathered} \hline 170 \mathrm{M} 5^{*} 08 \\ \text { or } \\ 170 \mathrm{M}^{*} 58 \end{gathered}$	$\begin{array}{\|c\|} \hline 170 \mathrm{M} 5 * 10 \\ \text { or } \\ 170 \mathrm{M}^{*} 60 \\ \hline \end{array}$	$\begin{gathered} \hline 170 \mathrm{M} 5^{* 12} \\ \text { or } \\ 170 \mathrm{M}^{*} 62 \end{gathered}$	$\begin{gathered} \hline 170 \mathrm{M} 5^{* 13} \\ \text { or } \\ 170 \mathrm{M}^{*} 63 \end{gathered}$	$\begin{gathered} \hline 170 \mathrm{M} 5^{* 14} \\ \text { or } \\ 170 \mathrm{M}^{*} 64 \end{gathered}$	$\begin{gathered} \hline 170 \mathrm{M} 5^{* 15} \\ \text { or } \\ 170 \mathrm{M}^{*} 65 \end{gathered}$
Mechanical								
Dimensions	HxWxD	mm	$1067 \times 439 \times 375$					
Weight approx.	m	kg	120	120	120	140	140	140
Ingress protection rating	-	-	IP20 (EN60529)					
Connection terminals	A	mm^{2}	up to 2×240					
Form of assembly	-	-	vertical					
Ambient conditions								
Energy dissipation (2 kHz switching frequency)	P	W	3800	4500	5600	6300	6850	7900
Coolant temperature	Tn	${ }^{\circ} \mathrm{C}$	-25 ... 45 (3K3 DIN IEC 60721-3-3)					
Storage temperature	TL	${ }^{\circ} \mathrm{C}$	-25 ... 55					
Transport temperature	T_{T}	${ }^{\circ} \mathrm{C}$	-25 ... 70					
Rel. humidity	-	\%	$15 \ldots 85$, not condensing					

If required by the customer, the switching frequency may be increased if the output current is reduced at the same time.
Comply with the applicable standards and regulations for this operating point.

Output current ${ }^{9)}$

Frequency inverter nominal power	2 kHz	4 kHz	8 kHz
	305	305	305
200 kW	380	380	380
250 kW	475	475	475
315 kW	595	595	595
355 kW	645	645	645
400 kW	735	735	735

[^1]
8.11 Size 8 KFU 510 (160 to 400 kW, 525 V)

Type								
KFU 510			--230	-290	-360	-450	-490	-560
Size			8					
Output, motor side								
Recommended motor shaft power	P	kW	160	200	250	315	355	400
Output current	P	$\mathrm{A}_{\text {eff. }}$	230	290	360	450	490	560
Long-term overload current (60 s) ${ }^{\text {1) }}$	I	$\mathrm{A}_{\text {eff. }}$	345	435	540	675	735	840
Short-term overload current (1 s) ${ }^{\text {2) }}$	I	$\mathrm{A}_{\text {eff }}$	420	520	650	810	880	1000
Output voltage	U	$\mathrm{V}_{\text {eff. }}$	Maximum input voltage, three-phase					
Protection	-	-	Short circuit / earth fault proof					
Rotary field frequency	f	Hz	$\left.\pm 500 \mathrm{~Hz}^{3}\right)$					
Switching frequency	f	kHz	2, 4, $8^{4)}$					
Output, braking resistor (external) ${ }^{\text {5 }}$								
Min. braking resistance	R	Ω	1,20	1,20	1,20	0,80	0,80	0,80
Recommended braking resistor $\left(U_{d B C}=770 \mathrm{~V}\right)$	R	Ω	2,70	2,70	2,70	1,50	1,50	1,50
Imput. mains side								
Mains current ${ }^{\text {6 }}$	1	A	215	270	335	420	470	525
Mains voltage ${ }^{7}$	U	V	525					
Mains frequency	f	Hz	50 (60)					
Fuses ${ }^{8)}$	1	A	315	350	450	550	630	700
Mechanical								
Dimensions	HxWxD	mm	$1067 \times 439 \times 375$					
Weight approx.	m	kg	120	120	120	140	140	140
Ingress protection rating	-	-	IP20 (EN60529)					
Connection terminals	A	$\underset{2}{ } \mathrm{~mm}^{2}$	up to 2×240					
Form of assembly	-	-	vertical					
Ambient conditions								
Energy dissipation (2 kHz switching frequency)	P	W	3800	4500	5600	6300	6850	7900
Coolant temperature	T_{n}	${ }^{\circ} \mathrm{C}$	-25 ... 45 (3K3 DIN IEC 60721-3-3)					
Storage temperature	TL	${ }^{\circ} \mathrm{C}$	-25 ... 55					
Transport temperature	TT	${ }^{\circ} \mathrm{C}$	-25 ... 70					
Rel. humidity	-	\%	$15 \ldots 85$, not condensing					

If required by the customer, the switching frequency may be increased if the output current is reduced at the same time.
Comply with the applicable standards and regulations for this operating point.
Output current ${ }^{9}$)

Frequency inferter nominal power	Switching frequency		
	2 kHz	4 kHz	8 kHz
160 kW	230	230	230
200 kW	290	290	290
250 kW	360	360	360
315 kW	450	450	450
355 kW	490	490	490
400 kW	560	560	560

[^2]
8.12 Size 8 KFU 610 (160 to $400 \mathrm{~kW}, 690$ V)

Type								
KFU 610			-180	-230	-280	-350	-400	-450
Output motor side								
Recommended motor shaft power	P	kW	160	200	250	315	355	400
Output current	I	$\mathrm{A}_{\text {eff. }}$	180	230	280	350	400	450
Long-term overload current (60 s) ${ }^{1)}$	I	$\mathrm{A}_{\text {eff. }}$	270	350	420	530	600	675
Short-term overload current (1 s) ${ }^{2)}$	I	$\mathrm{A}_{\text {eff. }}$	330	420	510	630	720	750
Output voltage	U	$\mathrm{V}_{\text {eff. }}$	Maximum input voltage, three-phase					
Protection	-	-	Short circuit / earth fault proof					
Rotary field frequency	f	Hz	$\left.\pm 500 \mathrm{~Hz}^{3}\right)$					
Switching frequency	f	kHz	2, 4, ${ }^{4}{ }^{4}$					
Output, braking resistor (external)								
Min. braking resistance	R	Ω	3,00	3,00	3,00	1,80	1,80	1,80
Recommended braking resistor $\left(U_{\mathrm{dBC}}=770 \mathrm{~V}\right)$	R	Ω	5,00	5,00	5,00	3,00	3,00	3,00
Input, mains side								
Power supply current ${ }^{6}$)	1	A	160	200	250	320	360	410
Mains voltage ${ }^{7}$)	U	V	690 (for UL reduced: 600)					
Mains frequency	f	Hz	50 (60)					
Fuses ${ }^{8)}$	I	A	250	315	350	450	500	550
Mechanical								
Dimensions	HxWxD	mm	$1067 \times 439 \times 375$					
Weight approx.	m	kg	120	120	120	140	140	140
Ingress protection rating	-	-	IP20 (EN60529)					
Connection terminals	A	mm^{2}	up to 2×240					
Form of assembly	-	-	vertical					
Ambient conditions								
Energy dissipation (2 kHz switching frequency)	P	W	3200	3950	4500	5500	6250	6900
Coolant temperature	T_{n}	${ }^{\circ} \mathrm{C}$	-25 ... 45 (3K3 DIN IEC 721-3-3)					
Storage temperature	TL	${ }^{\circ} \mathrm{C}$	-25... 55					
Transport temperature	T_{T}	${ }^{\circ} \mathrm{C}$	-25... 70					
Rel. humidity	-	\%	$15 . . .85$, not condensing					

If required by the customer, the switching frequency may be increased if the output current is reduced at the same time. Comply with the applicable standards and regulations for this operating point.
Output current ${ }^{9}$)

Frequency inverter nominal power	2 kHz	4 kHz	8 kHz
	180	180	180
200 kW	230	230	230
250 kW	280	280	280
315 kW	350	350	350
355 kW	400	400	400
400 kW	450	436	410

[^3]
[^0]: ${ }^{1)}$ Three-phase connection requires a commutating choke.
 ${ }^{2)}$ Mains current with relative mains impedance $\geq 1 \%$ (see chapter,Electrical installation")
 ${ }^{3}$) Maximum current in continuous operation

[^1]: 1) Power reduction with torsional frequencies below 10 Hz
 2) Only with torsional frequencies above 10 Hz
 3) Depending on switching frequency
 4) Reduction of switching frequency possible on certain conditions
 5) As an option, the frequency inverter of this size is available without internal brake transistor
 ${ }^{6)} \quad$ Rated value with recommended motor power, 400 V mains voltage and mains inductance $U_{k}=4 \%$
 6) Semiconductor fuses recommended (e.g. Bussmann Type 170M)
 7) For UL-compliant fusing, the specified Cooper Bussmann fuses must be used. * is a placeholder for assembly.
 8) Maximum current in continuous operation
[^2]: 1) Power reduction with torsional frequencies below 10 Hz
 2) Only with torsional frequencies above 10 Hz
 3) Depending on switching frequency
 4) Reduction of switching frequency possible on certain conditions
 5) As an option, the frequency inverter of this size is available without internal brake transistor
 ${ }^{6)} \quad$ Rated value with recommended motor power, 525 V mains voltage and mains inductance $U_{K}=4 \%$
 6) Note that, in addition to $\mathrm{AC} 3 \times 525 \mathrm{~V}$ connection, $\mathrm{AC} 3 \times 400 \mathrm{~V}$ connection is also required, see Chapter 4.3
 ${ }^{8)} \quad$ Semiconductor fuses recommended (e.g. Bussmann Type 170M)
 7) Maximum current in continuous operation
[^3]: 1) Power reduction with torsional frequencies below 15 Hz
 2) Only with torsional frequencies above 15 Hz
 3) Depending on switching frequency
 4) Reduction of switching frequency possible on certain conditions
 5) As an option, the frequency inverter of this size is available without internal brake transistor
 6) Rated value with recommended motor power, 690 V mains voltage and mains inductance $\mathrm{UK}=4 \%$
 7) Note that, in addition to AC $3 \times 690 \mathrm{~V}$ connection, $\mathrm{AC} 3 \times 400 \mathrm{~V}$ connection is also required, see Chapter 4.3.
 8) Semiconductor fuses recommended (e.g. Bussmann Type 170M)
 9) Maximum current in continuous operation
