

Kommunikationsmodul CM 232 485 MODBUS

Frequenzumrichter

Serie KFU 2- / 4-

0,55 bis 3,0 kW - 230 V - KFU 2-0,55 bis 132 kW - 400 V - KFU 4-

Allgemeines zur Dokumentation

Die vorliegende Dokumentation ergänzt die Betriebsanleitung für Anwendungen mit den Grundgeräten der ACT- und ACU-Umrichterserie. Sie beinhaltet benötigte Informationen für die Kommunikationsmodule CM-232 und CM-485.

Die Anwenderdokumentation ist zur besseren Übersicht entsprechend den kundenspezifischen Anforderungen an den Frequenzumrichter strukturiert.

Kurzanleitung

Die Kurzanleitung beschreibt die grundlegenden Schritte zur mechanischen und elektrischen Installation des Frequenzumrichters. Die geführte Inbetriebnahme unterstützt Sie bei der Auswahl notwendiger Parameter und der Softwarekonfiguration des Frequenzumrichters.

Betriebsanleitung

Die Betriebsanleitung dokumentiert die vollständige Funktionalität des Frequenzumrichters. Die für spezielle Anwendungen notwendigen Parameter zur Anpassung an die Applikation und die umfangreichen Zusatzfunktionen sind detailliert beschrieben.

Anwendungshandbuch

Das Anwendungshandbuch ergänzt die Dokumentation zur zielgerichteten Installation und Inbetriebnahme des Frequenzumrichters. Informationen zu verschiedenen Themen im Zusammenhang mit dem Einsatz des Frequenzumrichters werden anwendungsspezifisch beschrieben.

Installationsanleitung

Die Installationsanleitung beschreibt die Installation und Anwendung von Geräten, ergänzend zur Kurzanleitung oder Betriebsanleitung.

Die Dokumentation und zusätzliche Informationen können Sie über Ihren Lieferanten für Antriebssysteme anfordern. Für die Zwecke dieser Dokumentation werden nachfolgende Piktogramme und Signalworte verwendet:

Gefahr!

bedeutet, unmittelbar drohende Gefährdung. Tod, schwerer Personenschaden und erheblicher Sachschaden werden eintreten, wenn die Vorsichtsmaßnahme nicht getroffen wird.

Warnung!

kennzeichnet eine mögliche Gefährdung. Tod, schwerer Personenschaden und erheblicher Sachschaden kann die Folge sein, wenn der Hinweistext nicht beachtet wird.

Vorsicht!

weist auf eine unmittelbar drohende Gefährdung hin. Personen oder Sachschaden kann die Folge sein.

Achtung!

weist auf ein mögliches Betriebsverhalten oder einen unerwünschten Zustand hin, der entsprechend dem Hinweistext auftreten kann.

Hinweis

kennzeichnet eine Information die Ihnen die Handhabung erleichtert und ergänzt den entsprechenden Teil der Dokumentation.

Warnung!

Beachten Sie bei der Installation und Inbetriebnahme die Hinweise der Dokumentation. Sie, als qualifizierte Person, müssen vor Beginn der Tätigkeit die Dokumentation sorgfältig lesen und die Sicherheitshinweise beachten. Für die Zwecke der Dokumentation bezeichnet "qualifizierte Person" eine Person, welche mit der Aufstellung, Montage, Inbetriebsetzung und dem Betrieb der Frequenzumrichter vertraut ist, und über die ihrer Tätigkeit entsprechende Qualifikation verfügt.

KFU 2-/4-

Inhaltsverzeichnis

1	Allg	emeine Sicherheits- und Anwendungshinweise	5
	1.1	Allgemeine Hinweise	5
	1.2	Bestimmungsgemäße Verwendung	6
	1.3	Transport und Lagerung	6
	1.4	Handhabung und Aufstellung	6
	1.5	Elektrischer Anschluss	6
	1.6	Betriebshinweise	7
	1.7	Wartung und Instandhaltung	7
2	Einl	eitung	7
Ξ			
3	Mo	ntage/Demontage des Kommunikationsmoduls	
	3.1	Montage	
	3.2	Demontage	.10
4	Sted	ckerbelegung/Busabschluss/Leitung	.11
	4.1	RS232 Kommunikations Modul CM-232 DB9	.11
	4.2	RS485 Kommunikations Modul	
	4.2.	1 RS485-Baugruppe CM-485 DB9	. 12
	4.2.	2 RS485-Baugruppe CM-485 T	. 12
	4.2.	3 Busabschluss/Terminierung	. 13
-	l se b	etriebnahme	4.4
2			
	5.1	Grundsätzliches zur Konfiguration	
	5.2	RS232-Baugruppe CM-232	. 16
	5.2.		
	5.2.		
	5.3	RS485-Baugruppe CM-485	
	5.3.		
	5.3.	2 Modbus Knotenadresse einstellen	. 17
6	Mo	dbus über serielles Übertragungsprotokoll	. 18
	6.1	Prinzip Master/Slave Protokoll	
	6.2	Adressdarstellung	
	6.3	Telegrammaufbau	
	6.4	Unterstützte Funktionskodes	
	6.4.		
	6.4.	·	
	6.4.	·	
	6.4.	•	
	6.4.	5 Funktionskode 8, Diagnose	. 25
	6.5	Ausnahmebedingungsantworten	
	6.6	Ausnahmebedingungskodes	. 28
	6.7	Die zwei Betriebsarten zur seriellen Übertragung	
	6.7.	0 0	
		.7.1.1 Zeichenformat	
	J	.,	

KFU 2-/4-

6.7 6.7.2 6.7 6.7	.1.3 Modbus RTU Nachrichtentelegramm .1.4 CRC Prüfung	30 33 33 33
	Zeitüberwachungsfunktion	
6.9 \	Vatchdog Überwachungsfunktion	35
7 Hand	habung der Datensätze/zyklisches Schreiben	36
8 Modl	ous Beispieltelegramme	39
8.1 <i>N</i> 8.1.1 8.1.2 8.1.3 8.1.4 8.1.5	Funktionskode 3, 16-Bit Parameter lesen	39 40 41 42
8.2 M 8.2.1 8.2.2 8.2.3 8.2.4 8.2.5	Modbus ASCII-Nachrichten Beispiele Funktionskode 3, 16-Bit Parameter lesen Funktionskode 6, 16-Bit Parameter schreiben Funktionskode 100, 32-Bit Parameter lesen Funktionskode 101, 32-Bit Parameter schreiben Funktionskode 8, Diagnose	44 44 45 46 47
9 ACT	Steuerung/Sollwert	49
9.1.1 9.1.2 9.1 9.1 9.1.3	0	51 54 59 60 61
9.2.1 9.2.2		64
10 ACU	Steuerung/Sollwert	67
10.1	Steuerung über Kontakte/Remote-Kontakte	
10.2 10.2. 10.2. 10.2.	2 Verhalten bei Übergang 5	75 76
11 Parar	neterliste	79
11.1 11.2	Istwertmenü (VAL) Parametermenü (PARA)	
12 Anha	ng	
12.1	Warnmeldungen	
12.2	Fehlermeldungen	
12.3	ASCII Tabelle (0x00 – 0x7F)	84

1 Allgemeine Sicherheits- und Anwendungshinweise

Die vorliegende Dokumentation wurde mit größter Sorgfalt erstellt und mehrfach ausgiebig geprüft. Aus Gründen der Übersichtlichkeit konnten nicht sämtliche Detailinformationen zu allen Typen des Produkts und auch nicht jeder denkbare Fall der Aufstellung, des Betriebes oder der Instandhaltung berücksichtigt werden. Sollten Sie weitere Informationen wünschen, oder sollten besondere Probleme auftreten, die in der Dokumentation nicht ausführlich genug behandelt werden, können Sie die erforderliche Auskunft über Ihren Lieferanten für Antriebssysteme anfordern. Außerdem weisen wir darauf hin, dass der Inhalt dieser Dokumentation nicht Teil einer früheren oder bestehenden Vereinbarung, Zusage oder eines Rechtsverhältnisses ist oder dieses abändern soll. Sämtliche Verpflichtungen des Herstellers ergeben sich aus dem jeweiligen Kaufvertrag, der auch die vollständige und allein gültige Gewährleistungsregelung enthält. Diese vertraglichen Gewährleistungsbestimmungen werden durch die Ausführung dieser Dokumentation weder erweitert noch beschränkt.

Der Hersteller behält sich das Recht vor, Inhalt und Produktangaben sowie Auslassungen in der Betriebsanleitung ohne vorherige Bekanntgabe zu korrigieren, bzw. zu ändern und übernimmt keinerlei Haftung für Schäden, Verletzungen bzw. Aufwendungen, die auf vorgenannte Gründe zurückzuführen sind.

1.1 Allgemeine Hinweise

Warnung!

Die Frequenzumrichter führen während des Betriebes ihrer Schutzart entsprechend hohe Spannungen, treiben bewegliche Teile an und besitzen heiße Oberflächen.

Bei unzulässigem Entfernen der erforderlichen Abdeckungen, bei unsachgemäßem Einsatz, bei falscher Installation oder Bedienung, besteht die Gefahr von schweren Personen- oder Sachschäden.

Zur Vermeidung dieser Schäden darf nur qualifiziertes Fachpersonal die Arbeiten zum Transport, zur Installation, Inbetriebnahme, Einstellung und Instandhaltung ausführen. Die Normen EN 50178, IEC 60364 (Cenelec HD 384 oder DIN VDE 0100), IEC 60664-1 (Cenelec HD 625 oder VDE 0110-1), BGV A2 (VBG 4) und nationale Vorschriften beachten. Qualifizierte Personen im Sinne dieser grundsätzlichen Sicherheitshinweise sind Personen, die mit Aufstellung, Montage, Inbetriebsetzung und Betrieb von Frequenzumrichtern und den möglichen Gefahrenquellen vertraut sind, sowie über die ihrer Tätigkeit entsprechenden Qualifikationen verfügen.

1.2 Bestimmungsgemäße Verwendung

Warnung!

Die Frequenzumrichter sind elektrische Antriebskomponenten, die zum Einbau in industrielle Anlagen oder Maschinen bestimmt sind. Die Inbetriebnahme und Aufnahme des bestimmungsgemäßen Betriebs ist solange untersagt, bis festgestellt wurde, dass die Maschine den Bestimmungen der EG-Maschinenrichtlinie 98/37/EWG und EN 60204 entspricht. Gemäß der CE-Kennzeichnung erfüllen die Frequenzumrichter die Anforderungen der Niederspannungsrichtlinie 73/23/EWG und entsprechen der Norm EN 50178 / DIN VDE 0160 und EN 61800-2. Die Verantwortung für die Einhaltung der EMV-Richtlinie 89/336/EWG liegt beim Anwender. Frequenzumrichter sind eingeschränkt erhältlich und als Komponenten ausschließlich zur professionellen Verwendung im Sinne der Norm EN 61000-3-2 bestimmt.

Mit der Erteilung des UL-Prüfzeichens gemäß UL508c sind auch die Anforderungen des CSA Standard C22.2-No. 14-95 erfüllt.

Die technischen Daten und die Angaben zu Anschluss- und Umgebungsbedingungen müssen dem Typenschild und der Dokumentation entnommen und unbedingt eingehalten werden. Die Anleitung muss vor Arbeiten am Gerät aufmerksam gelesen und verstanden worden sein.

1.3 Transport und Lagerung

Den Transport und die Lagerung sachgemäß in der Originalverpackung durchführen. Nur in trockenen, staub- und nässegeschützten Räumen, mit geringen Temperaturschwankungen lagern. Die klimatischen Bedingungen nach EN 50178 und die Kennzeichnung auf der Verpackung beachten. Ohne Anschluss an die zulässige Netzspannung dürfen die Geräte nicht länger als ein Jahr gelagert werden.

1.4 Handhabung und Aufstellung

Warnung! Beschädigte oder zerstörte Ko

Beschädigte oder zerstörte Komponenten dürfen nicht in Betrieb genommen werden, da sie Ihre Gesundheit gefährden können.

Den Frequenzumrichter nach der Dokumentation, den Vorschriften und Normen verwenden. Sorgfältig handhaben und mechanische Überlastung vermeiden. Keine Bauelemente verbiegen oder Isolationsabstände ändern. Keine elektronischen Bauelemente und Kontakte berühren. Die Geräte enthalten elektrostatisch gefährdete Bauelemente, die durch unsachgemäße Handhabung leicht beschädigt werden können. Bei Betrieb von beschädigten oder zerstörten Bauelemente ist die Einhaltung angewandter Normen nicht gewährleistet. Warnschilder am Gerät nicht entfernen.

1.5 Elektrischer Anschluss

Warnung!

Vor Montage- und Anschlussarbeiten den Frequenzumrichter spannungslos schalten. Die Spannungsfreiheit prüfen.

Spannungsführende Anschlüsse nicht berühren, da die Kondensatoren aufgeladen sein können.

Die Hinweise in der Betriebsanleitung und die Kennzeichnung des Frequenzumrichters beachten.

Bei Tätigkeiten am Frequenzumrichter die geltenden Normen BGV A2 (VBG 4), VDE 0100 und andere nationale Vorschriften beachten. Die Hinweise der Dokumentation zur elektrischen Installation und die einschlägigen Vorschriften beachten. Die Verantwortung für die Einhaltung und Prüfung der Grenzwerte der EMV-Produktnorm EN 61800-3 drehzahlveränderlicher elektrischer Antriebe liegt beim Hersteller der industriellen Anlage oder Maschine.

Die Dokumentation enthält Hinweise für die EMV-gerechte Installation. Die an den Frequenzumrichter angeschlossenen Leitungen dürfen, ohne vorherige schaltungstechnische Maßnahmen, keiner Isolationsprüfung mit hoher Prüfspannung ausgesetzt werden.

6

1.6 Betriebshinweise

Warnung!

Der Frequenzumrichter darf alle 60 s an das Netz geschaltet werden. Dies beim Tippbetrieb eines Netzschützes berücksichtigen. Für die Inbetriebnahme oder nach Not-Aus ist einmaliges direktes Wiedereinschalten zulässig.

Nach einem Ausfall und Wiederanliegen der Versorgungsspannung kann es zum plötzlichen Wiederanlaufen des Motors kommen, wenn die Autostartfunktion aktiviert ist.

Ist eine Gefährdung von Personen möglich, muss eine externe Schaltung installiert werden, die ein Wiederanlaufen verhindert.

Vor der Inbetriebnahme und Aufnahme des bestimmungsgemäßen Betriebs alle Abdeckungen anbringen und die Klemmen überprüfen. Zusätzliche Überwachungs- und Schutzeinrichtungen gemäß EN 60204 und den jeweils gültigen Sicherheitsbestimmungen kontrollieren (z. B. Gesetz über technische Arbeitsmittel, Unfallverhütungsvorschriften usw.).

Während des Betriebes dürfen keine Anschlüsse vorgenommen werden.

1.7 Wartung und Instandhaltung

Warnung!

Unbefugtes Öffnen und unsachgemäße Eingriffe können zu Körperverletzung bzw. Sachschäden führen. Reparaturen der Frequenzumrichter dürfen nur vom Hersteller bzw. von ihm autorisierten Personen vorgenommen werden. Schutzeinrichtungen regelmäßig überprüfen.

2 Einleitung

Das vorliegende Dokument beschreibt das Modbus-Protokoll für die Kommunikationsmodule CM-232 mit RS232-Anschluss und CM-485 mit RS485-Anschluss. Dieses Protokoll kann alternativ zum VABus über die gleiche Hardware (CM-232/CM-485) genutzt werden. Beide Protokolle können nicht gleichzeitig betrieben werden. Die Modbus-Betriebsarten RTU und ASCII stehen zur Verfügung.

Für den RS232-Anschluss muss der Frequenzumrichter mit dem RS232-Kommunikationsmodul CM-232 ausgerüstet sein.

Für den RS485-Anschluss muss der Frequenzumrichter mit dem RS485-Kommunikationsmodul CM-485 ausgerüstet sein.

Das Kommunikationsmodul CM-232, bzw. CM-485, ist eine separate Komponente und muss vom Anwender an den Frequenzumrichter montiert werden. Dies ist im Kapitel 3.1 "Montage" beschrieben.

Hinweis:

Diese Anleitung beschreibt ausschließlich die Kommunikationsmodule CM-232 bzw. CM-485. Sie ist keine Grundlageninformation zur seriellen Schnittstelle RS232 bzw. RS485 und auch keine Grundlageninformation zum Betreiben von Frequenzumrichtern.

Diese Anleitung setzt grundlegende Kenntnisse über Methoden und Wirkungsweise der seriellen Schnittstelle RS232 bzw. RS485 und des Modbus-Protokolls auf Seiten des Anwenders voraus.

Hinweis:

In einigen Kapiteln dieser Anleitung sind – alternativ zur Bedieneinheit KP500 – Einstell- und Anzeigemöglichkeiten mit Hilfe der PC-Bediensoftware VPlus beschrieben. Hierbei kommuniziert VPlus

□ über das Modul CM-232 bzw. CM-485 **oder**

□ über den Schnittstellenadapter KP232

mit dem Frequenzumrichter.

Ist die serielle Schnittstelle des Moduls CM-232 oder CM-485 z. B. mit einer SPS verbunden, ist ein gleichzeitiger Zugriff von VPlus auf den Frequenzumrichter über diese Schnittstelle nicht mehr möglich.

In diesem Fall kann die Verbindung zum PC über den optionalen Schnittstellenadapter KP232 hergestellt werden.

Warnung!

Über den RS232-Anschluss am CM-232 bzw. den RS485-Anschluss am CM-485 kann eine Steuerung auf **sämtliche** Parameter des Frequenzumrichters zuzugreifen.

Eine Veränderung von Parametern, deren Bedeutung dem Anwender unbekannt sind, kann zur Funktionsunfähigkeit des Frequenzumrichters sowie zu Anlagen gefährdenden Zuständen führen.

RS485-Verbindung:

Frequenzumrichter können durch Erweiterung mit Kommunikationsmodulen CM-485 zu einem Bus-System verschaltet werden. Die Bus-Struktur ist linienförmig und als Zweidrahtleitung ausgeführt. Über einen Bus-Master können bis zu 247 Frequenzumrichter adressiert und angesprochen werden.

Die Frequenzumrichter können auf einfache Weise parametriert und gesteuert werden. Des weiteren können mit dem Bus-System während des Betriebs mit Hilfe eines PCs oder einer SPS Daten von den Frequenzumrichtern abgefragt und gesetzt werden.

RS232-Verbindung:

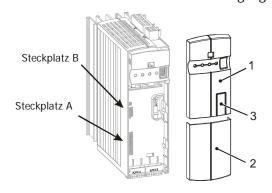
Die RS232-Verbindung gestattet eine Punkt-zu-Punkt-Verbindung zwischen zwei Teilnehmern.

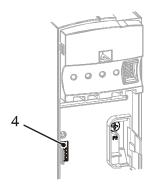
3 Montage/Demontage des Kommunikationsmoduls

3.1 Montage

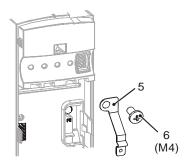
Das Kommunikationsmodul wird für die Montage vormontiert in einem Gehäuse geliefert. Zusätzlich ist für die PE-Anbindung (Schirmung) eine PE-Feder beigelegt.

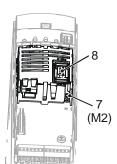
Vorsicht!

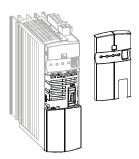

Vor der Montage des Kommunikationsmoduls muss der Frequenzumrichter spannungsfrei geschaltet werden.


Ein Montage unter Spannung ist nicht zulässig und führt zur Zerstörung des Frequenzumrichters und/oder des Kommunikationsmoduls.

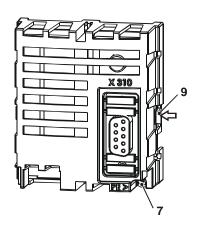
Die auf der Rückseite sichtbare Leiterkarte darf nicht berührt werden, da Bauteile beschädigt werden können.

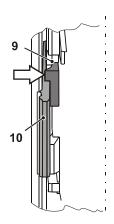

Arbeitsschritte:

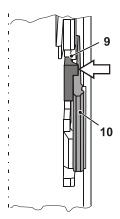

- ☐ Frequenzumrichter spannungsfrei schalten und gegen Wiedereinschalten sichern!
- ☐ Entfernen Sie die Abdeckungen (1) und (2) des Frequenzumrichters. Steckplatz B (4) für das Kommunikationsmodul wird zugänglich.



- Montieren Sie die mitgelieferte PE-Feder (5) mit Hilfe der im Gerät vorhandenen M4-Schraube (6). Die Feder muss dabei mittig ausgerichtet sein.
- Stecken Sie das Kommunikationsmodul auf Steckplatz B (4) bis dieses hörbar einrastet.
- □ Verschrauben Sie das Kommunikationsmodul und die PE-Feder (5) mit der am Modul vorhandenen M2-Schraube (7).




- Brechen Sie in der oberen Abdeckung (1) den vorgestanzten Durchbruch (3) für den Stecker X310 (8) aus.
- ☐ Montieren Sie die beiden Abdeckungen (1) und (2).



3.2 Demontage

Den Frequenzumrichter spannungsfrei schalten und gegen Wiedereinschalten sichern!
 Entfernen Sie die Abdeckungen (1) und (2) des Frequenzumrichters.

- □ Lösen Sie die M2-Schraube (7) am Kommunikationsmodul.
- □ Ziehen Sie das Kommunikationsmodul vom Steckplatz B (4), indem Sie zuerst rechts und dann links die Rasthaken (9) des Moduls mit einem kleinen Schraubendreher aus dem Gehäuse des Frequenzumrichters entriegeln.

Die Rasthaken (9) befinden sich an der Stelle, wo die Rasthaken (10) für die obere Abdeckung (1) aus dem Gehäuse des Frequenzumrichters ragen.

- □ Führen Sie dazu den Schraubendreher vorsichtig in den Spalt zwischen Modulgehäuse und Frequenzumrichter und drücken Sie den Rasthaken in Pfeilrichtung (•) nach innen. Wenn die rechte Seite entriegelt ist, ziehen Sie das Modul rechts etwas aus seiner Halterung und halten es fest.
- ☐ Halten Sie das Modul rechts fest, während Sie den Rasthaken auf der linken Seite auf gleiche Weise entriegeln (•).
- ☐ Ziehen Sie das Modul vorsichtig von seinem Steckplatz indem Sie abwechselnd an der rechten und an der linken Seite ziehen.
- □ Demontieren Sie die PE-Feder (5).
- ☐ Montieren Sie die beiden Abdeckungen (1) und (2).

4 Steckerbelegung/Busabschluss/Leitung

4.1 RS232 Kommunikations Modul CM-232 DB9

Der Anschluss der RS232-Schnittstelle an einen PC oder an eine Steuerung erfolgt über die 9-polige D-Sub Buchse **X310**.

Die Belegung entspricht dem Standard, so dass zum Anschluss lediglich eine RS232-Verbindungsleitung (1:1) notwendig ist.

Artikel Nr. 179-675 100

	Busstecker X310 CM-232 (9polig D-Sub)			
Pin	Name	Funktion		
Gehäuse	Schirm	verbunden mit PE		
1	_	n. c.		
2	RxD	receive data (input)		
3	TxD	transmit data (output)		
4	_	n. c.		
5	0 V	Masse		
6	_	n. c.		
7	_	n. c.		
8	-	n. c.		
9	_	n. c.		

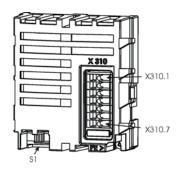
- □ Wird für den RS232-Anschluss keine vorkonfektionierte Verbindungsleitung benutzt, ist eine verdrillte und geschirmte Leitung zu verwenden
- Belegung der Steckkontakte 1:1
- Der Schirm ist als Geflechtschirm auszuführen (kein Folienschirm)
- □ Der Leitungsschirm ist an beiden Leitungsenden flächig mit PE zu verbinden

4.2 RS485 Kommunikations Modul

- ☐ Für die RS485 Busleitung ist eine verdrillte, geschirmte Leitung zu verwenden.
- ☐ Der Schirm ist als Geflechtschirm auszuführen. (kein Folienschirm)
- □ Der Leitungsschirm ist an beiden Enden flächig mit PE zu verbinden.
- □ Die Steckerbelegungen des RS485 Kabels und des RS232 Kabels sind unterschiedlich. Wird das falsche Kabel verwendet, ist keine Datenübertragung möglich.

4.2.1 RS485-Baugruppe CM-485 DB9

Der Anschluss der RS485-Schnittstelle erfolgt über die 9-polige D-Sub Buchse **X310**.


Details zur Belegung der Buchse sind der folgenden Tabelle zu entnehmen.

Artikel Nr. 179-675 110

Busstecker X310 CM-485 (9polig D-Sub)

Pin	Name	Funktion	
Gehäuse	Schirm	verbunden mit PE	
1	Datenleitung B	kurzschlussfest und funktionsisoliert; max. Strom 60 mA	
2	Datenleitung B'	Brücke von Pin 1 für Kabelschleifen	
3	0 V	GND/Masse	
4	_	n. c.	
5	+5 V	Versorgungsspannung Schnittstellenumsetzer +5 V	
6	_	n. c.	
7	Datenleitung A	kurzschlussfest und funktionsisoliert; max. Strom 60 mA	
8	Datenleitung A'	Brücke von Pin 7 für Kabelschleifen	
9	_	n. c.	

4.2.2 RS485-Baugruppe CM-485 T

Der Anschluss der RS485-Schnittstelle erfolgt über die 7-polige Federklemmleiste **X310**.

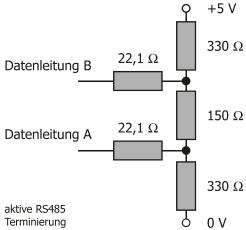
Details zur Belegung der Buchse sind der folgenden Tabelle zu entnehmen.

Artikel Nr. 179-675 111

Busstecker X310 CM-485T (7polige Klemmleiste)

Klemme	Name	Funktion	
1	Α	kurzschlussfest und funktionsisoliert; max. Strom 60 mA	
2	A'	Brücke von Pin 1 für Kabelschleifen	
3	В	kurzschlussfest und funktionsisoliert; max. Strom 60 mA	
4	В'	Brücke von Pin 3 für Kabelschleifen	
5	+5 V	Versorgungsspannung Schnittstellenumsetzer +5 V	
6	0 V	Masse / GND	
7	PE	Schirm	

4.2.3 Busabschluss/Terminierung


Achtung!

Der physikalisch erste und letzte Teilnehmer muss terminiert werden, also mit Busabschluss-Widerstand versehen werden. Beim CM-232 und CM-485 kann dazu der DIP-Schalter **\$1** verwendet werden.

Die Werkseinstellung für den Busabschluss ist OFF (Aus).

Auf eine richtige Terminierung (Busabschluss) achten! Anderenfalls ist eine Kommunikationsverbindung über die RS485-Schnittstelle nicht möglich!

Alternativ ist eine aktive Terminierung (Busabschluss) über eine entsprechende externe Schaltung möglich:

Die aktive Terminierung ist nur einmal je Netzwerk zulässig. Die gleichzeitige Terminierung über eine externe Schaltung und über den DIP-Schalter ist nicht zulässig.

Achten Sie bei der Verdrahtung auf eine durchgehende GND Leitung. Dies führt in der Praxis zu einem besseren Verhalten gegen Störungen.

Die Klemmen für die Signale A und B sind parallel ausgeführt. Dies erleichtert eine Verdrahtung mehrerer Umrichter.

Beispiel für die Verdrahtung mit verschiedenen CM-485 Baugruppen:

5 Inbetriebnahme

Die Schnittstellen CM-232 und CM-485 sind werksseitig wie folgt, eingestellt:

	Parameter	Einstellung
Nr.	Beschreibung	Werkseinstellung
395	Protokolltyp	0 - VABus
413	Watchdog Timer	0

	Parameter	Einstellung
Nr. Beschreibung		Werkseinstellung
10	Baudrate	4 - 19200
1375	Modbus Parität	0 – GERADE
1376	Modbus Adresse	1

5.1 Grundsätzliches zur Konfiguration

Die Kommunikationsmodule CM-232 bzw. CM-485 können auf verschiedene Art konfiguriert werden.

□ Direktverbindung CM-232 zum PC/SPS

Direkte Verbindung zwischen der 9-poligen D-Sub Buchse (X310) des CM-232 und der seriellen Schnittstelle eines PC oder einer SPS.

Konfiguration des installierten Kommunikationsmoduls über die Bediensoftware VPlus oder über die Bedieneinheit KP500.

Beim CM-232 erfolgt die Verbindung zum PC oder zur SPS über eine RS232-Verbindungsleitung (Belegung 1:1).

□ Direktverbindung CM-485 zum PC oder zur SPS

Direkte Verbindung zwischen der 9-poligen Sub-D Schnittstelle (X310) des CM-485 und der seriellen Schnittstelle eines PC oder einer SPS über einen Schnittstellenumsetzer.

Achtung! Für die Verbindung eines CM-485 mit der RS232 Schnittstelle eines PC oder einer SPS einen geeigneten Schnittstellenumsetzer in die Signalleitung installieren.

Konfiguration des installierten Kommunikationsmoduls über die Bediensoftware VPlus oder die Bedieneinheit KP500.

□ Verbindung vom Schnittstellenadapter KP232 mit dem PC

Anschluss des Schnittstellenadapters KP232 am Steckplatz A des Frequenzumrichters. Anschluss über eine RS232-Verbindungsleitung (1:1) zum PC. Konfiguration des installierten Kommunikationsmoduls über die Bediensoftware VPlus.

☐ Konfiguration über Bedieneinheit KP500

Konfiguration über die steckbare Bedieneinheit KP500 am Steckplatz A des Frequenzumrichters.

Achtung! Sender und Empfänger müssen auf die gleiche Übertragungsrate (Baudrate) eingestellt sein.

Die eingestellte Baudrate ist für die Kommunikationsmodule CM-232 und CM-485 wirksam. Der Schnittstellenadapter KP232 passt die Übertragungsrate automatisch an den PC oder die Steuerung an.

Arbeitsschritte:

Baugruppe CM-232 bzw. CM-485 an Frequenzumrichter montieren. Bei Baugruppe CM-232: CM-232 und PC über RS232-Kabel verbinden. Bei Baugruppe CM-485: CM-485 über RS485-Kabel mit Schnittstellenumsetzer verbinden. RS232-Anschluss des Schnittstellenumsetzers mit PC/SPS verbinden. oder
Bedieneinheit KP500 oder Schnittstellenadapter KP232 am Steckplatz A des Frequenzum- richters einstecken. Bei KP232: Schnittstellenadapter KP232 über serielles Kabel mit PC verbinden.

Protokolltypeinstellung

Ab Werk sind die Kommunikationsmodule CM-232/CM-485 auf das Standardprotokoll (VA-Bus) eingestellt. Nur mit diesem Protokolltyp ist eine Kommunikation mit der Bediensoftware VPlus möglich.

Achtung! Wird ein anderer Protokolltyp oder eine falsche Einstellung gewählt, ist keine

Kommunikation über CM-232 / CM-485 möglich!

In diesem Fall ist mit der Bedieneinheit KP500 eine Korrektur des Protokolltyps vorzunehmen.

Ausführliche Information siehe Kapitel 6 "Modbus über serielles Übertragungspro-

tokoll".

Hinweis: Der Schnittstellenadapter KP232 arbeitet unabhängig vom Kommunikationsmodul

CM-232 oder CM-485 immer mit dem Standardprotokoll VABus und kann daher

jederzeit mit VPlus operieren.

5.2 RS232-Baugruppe CM-232

5.2.1 Modbus Baudrate und Parität einstellen

Die Übertragungsgeschwindigkeit und Parität des CM-232 wird über die Parameter Baudrate 10 und Modbus Paritaet 1375 eingestellt.

Die Übertragungsgeschwindigkeit des CM-232 ist von einer Vielzahl von anwendungsspezifischen Parametern abhängig. Unter anderem begrenzt die Leitungslänge aufgrund von Signallaufzeiten die Übertragungsgeschwindigkeit.

<i>Baudrate</i> 10		Funktion	max. Leitungslänge 1)
1 –	2400 Baud	Übertragungsrate 2400 Baud	30 m
2 –	4800 Baud	Übertragungsrate 4800 Baud	30 m
3 –	9600 Baud	Übertragungsrate 9600 Baud	30 m
4 –	19200 Baud	Übertragungsrate 19200 Baud	30 m
5 –	57600 Baud	Übertragungsrate 57600 Baud	10 m
6 –	115200 Baud	Übertragungsrate 115200 Baud	10 m

Die angegebenen Leitungslängen sind empfohlene Maximalwerte, die u. a. von der Beschaffenheit des Kabels abhängig sind.

<i>Modbus Paritaet</i> 1375	Funktion	
0 – Gerade	Gerade Parität wird für die Übertragung genutzt.	
1 – Ungerade	Ungerade Parität wird für die Übertragung genutzt.	
2 – Keine	Keine Parität wird für die Übertragung genutzt.	

Eine geänderte Baudrate und Parität ist erst nach einem Reset des Frequenzumrich-Achtung! ters per Software oder nach Netz-Aus/Ein wirksam.

Beim Software-Reset wie folgt vorgehen:

- Über die Bedieneinheit KP500 oder über die Bediensoftware VPlus den Parameter Programm(ieren) 34 aufrufen.
- Den Parameterwert "123" einstellen.
- ☐ Mit "ENT" bestätigen.

Nach dem Reset initialisiert der Frequenzumrichter und ist nach wenigen Sekunden betriebsbereit.

5.2.2 Modbus Adresse einstellen

Die Adresse des CM-232 kann über den Parameter Modbus Adresse 1376 eingestellt werden.

	Parameter		Einst	ellung
Nr.	Beschreibung	Min.	Max.	Werkseinst.
1376	Modbus Adresse	1	247	1

Hinweis: In den meisten Fällen ist eine Änderung der Werkseinstellung nicht erforderlich

(Adresse 1). Für besondere Betriebsbedingungen kann die Adressierung angepasst werden.

Eine geänderte Adresse ist sofort und ohne Neustart des Frequenzumrichters wirk-Achtung!

Details zur Adressierung siehe Kapitel "6.2 Adressdarstellung".

5.3 RS485-Baugruppe CM-485

5.3.1 Modbus Baudrate und Parität einstellen

Die Übertragungsgeschwindigkeit und Parität des CM-485 wird über Parameter *Baudrate* **10** und *Modbus Paritaet* **1375** eingestellt.

Die Übertragungsgeschwindigkeit des CM-485 ist von einer Vielzahl von anwendungsspezifischen Parametern abhängig. Unter anderem begrenzt die Leitungslänge aufgrund von Signallaufzeiten die Übertragungsgeschwindigkeit. Mit zusätzlichen "Repeater" Baugruppen kann die max. Leitungslänge erhöht werden.

В	<i>audrate</i> 10	Funktion	max. Leitungslänge
1 –	2400 Baud	Übertragungsrate 2400 Baud	2400 m
2 –	4800 Baud	Übertragungsrate 4800 Baud	2400 m
3 –	9600 Baud	Übertragungsrate 9600 Baud	1200 m
4 –	19200 Baud	Übertragungsrate 19200 Baud	1200 m
5 –	57600 Baud	Übertragungsrate 57600 Baud	600 m
6 –	115200 Baud	Übertragungsrate 115200 Baud	300 m

Achtung!	Alle Busteilnehmer müssen auf gleiche Baudrate eingestellt sein.
	Eine geänderte Baudrate ist erst nach einem Reset des Frequenzumrichters per
	Software oder nach Netz-Aus/Ein wirksam.
	Beim Software-Reset wie folgt vorgehen:
	☐ Über die Bedieneinheit KP500 oder über die Bediensoftware VPlus den Pa-
	rameter <i>Programm(ieren)</i> 34 aufrufen.
	☐ Den Parameterwert "123" einstellen.
	☐ Mit "ENT" bestätigen.
	Nach dem Reset initialisiert der Frequenzumrichter und ist nach wenigen Se-
	kunden betriebsbereit.

Modbus Paritaet 1375	Function
0 – Gerade	Gerade Parität wird für die Übertragung genutzt.
1 – Ungerade	Ungerade Parität wird für die Übertragung genutzt.
2 – Keine	Keine Parität wird für die Übertragung genutzt.

5.3.2 Modbus Knotenadresse einstellen

Die Knotenadresse des CM-485 wird über den Parameter *Modbus Adresse* **1376** eingestellt. Bis zu 247 Frequenzumrichter können am RS485-Bus betrieben werden. Diese erhalten eindeutige Adressen im Bereich von 1 bis 247.

	Parameter	Einstellung			
Nr.	Beschreibung	Min.	Max.	Werkseinst.	
1376	Modbus Adresse	1	247	1	

Achtung!	Für den Betrieb unter Nutzung des CM-485 muss für jeden Teilnehmer eine Adresse vergeben werden.
	Bei der Vergabe der Busadressen darf keine Doppelbelegung auftreten. Eine geänderte Adresse ist sofort und ohne Neustart des Frequenzumrichters wirksam.

Details zur Adressierung siehe Kapitel "6.2 Adressdarstellung".

6 Modbus über serielles Übertragungsprotokoll

Das hier beschriebene Modbus Protokoll ist in der Standardsoftware der Geräte KFU 2-/4- enthalten. Es definiert und beschreibt die Kommunikation über die seriellen Schnittstellen RS232/RS485 mit Hilfe der Betriebsarten Modbus RTU und ASCII.

Die Werkseinstellung für die Frequenzumrichter ist das VABus Protokoll.

Für den Parameter *Protokolltyp* **395** sind folgende Einstellungen möglich:

<i>Protokolltyp</i> 395	Funktion
0 - VABus	Standardprotokoll (Werkseinstellung)
1 - P-Bus	Anwendungsspezifisches Busprotokoll ¹⁾
2 - Modbus RTU	Modbus über serielle Verbindung (mit Betriebsart RTU Übertragung)
3 - Modbus ASCII	Modbus über serielle Verbindung (mit Betriebsart ASCII Übertragung)

Hinweis

¹⁾ Dieses Busprotokoll wird nur für besondere Anwendungen genutzt. Es kann für Standardanwendungen nicht eingesetzt werden.

Für weiterführende Informationen siehe anwendungsspezifische Anleitung!

Achtung!

Änderungen des Parameters *Protokolltyp* **395** sind sofort und ohne Neustart des Frequenzumrichters wirksam.

Bei verkehrt eingestelltem Protokoll ist eine Kommunikation über CM-232/CM485 nicht möglich.

In diesem Fall über die Bedieneinheit KP500 oder über KP232 und VPlus den Protokolltyp korrigieren.

Das Modbus Protokoll ermöglicht den Betrieb als reines Master/Slave-System. Der Bus-Master ist ein PC, eine SPS oder ein beliebiges Rechnersystem.

6.1 Prinzip Master/Slave Protokoll

Das serielle Übertragungsprotokoll MODBUS ist ein Master/Slave Protokoll. Mit dem Bus ist nur ein Master (gleichzeitig) verbunden. Ein oder mehrere (maximal 247) Slave-Knoten sind über denselben Bus miteinander verbunden. Eine MODBUS Kommunikation wird immer vom Master initiiert. Die Slave-Knoten kommunizieren nicht miteinander. Der Master initiiert nur eine MODBUS Übertragung gleichzeitig.

Der Master sendet eine MODBUS Anforderung an die Slave-Knoten in zwei verschiedenen Betriebsarten:

- □ In der Unicast Betriebsart adressiert der Master einen einzelnen Slave-Knoten. Nach dem Empfangen und Verarbeiten der Anforderung sendet der Slave-Knoten eine Nachricht (eine Antwort) an den Master. In dieser Betriebsart besteht eine MODBUS Übertragung aus 2 Nachrichten: eine Anforderung vom Master und eine Antwort vom Slave-Knoten. Jeder Slave-Knoten muss eine eindeutige Adresse (von 1 bis 247) haben, so dass die Slave-Knoten unabhängig voneinander Anforderungen erhalten können.
- In der **Broadcast** Betriebsart kann der Master eine Anforderung an alle Slave-Knoten senden. Die Slave-Knoten senden keine Antwort auf die Anforderung. Die Anforderung besteht nur aus Schreibbefehlen. Alle Teilnehmer müssen die Schreibbefehle akzeptieren. Die Adresse 0 ist zur Erkennung einer Broadcast-Übermittlung reserviert.

6.2 Adressdarstellung

Bis zu 247 Frequenzumrichter können am MODBUS betrieben werden. Diese erhalten die Adressen 1 ... 247. Über die Adresse 0 können alle angeschlossenen Teilnehmer am Bus gleichzeitig angesprochen werden. Die Adresse 0 wird auch als Broadcast-Adresse bezeichnet.

6.3 Telegrammaufbau

Ein MODBUS Telegramm besteht aus den folgenden Feldern:

Adresse Funktions			ionskode	Daten					CRC (oder LRC)		
Das	Adres	ssfeld	enthält	im	Modbus	Telegrar	mm	nur	die	Slave-	-Adresse.
mal. I Slave, sende	Die ein: indem t die A	zelnen : n die Sla antwort	Slave-Ger ave-Adres mit der A	äte ha se im . .ngabe	der Slave-k ben Adress Adressfeld o der eigene Icher Slave	en von 1 . des Telegra n Adresse	247. amms im Ad	Ein <i>N</i> einge ressfe	∧aster tragen	adressi wird. [ert einen Der Slave
	Funktio				enzumrichte enfeld folge vort e	n, welches		meter	für ei	ne Anf	
Dater mebe	nfeld di dingun arbeitet	e anget gskode	^f orderten , um den	Daten n Mas	ing über de . Falls ein Fo ter mitzute ng von Au Kapite	ehler auftri ilen, dass snahmebe	itt, ent die Ar dingur	hält d nforde	as Felorung i	d einen nicht er eren Ko	Ausnah- folgreich
summ		er), wir	•	-	greich empt gesendet.	_					
ten. <i>A</i> versch	Abhäng niedene	gig von	der genu nungsve	ıtzten	ebnis der R Betriebsart 1 genutzt. S	der Übert	ragun	g (RTI	J odei	r ASCII)) werden

6.4 Unterstützte Funktionskodes

Die Modbus Definitionen für das Schreiben und Lesen von Daten sind nicht direkt mit dem Parameterzugriff eines Frequenzumrichters kompatibel. Modbus ist für das Schreiben und Lesen von Bits ausgelegt und erfasst Daten auf andere Art. Der Datenzugriff ist auf eine Bitbreite von 16 begrenzt.

Um die Anforderungen des Modbus zu erfüllen, ist der Datenzugriff in den Frequenzumrichtern durch die folgenden Funktionskodes festgelegt.

Funktionskode 3
 Funktionskode 3
 Funktionskode 6
 Funktionskode 6
 EINE Datenbreite von 16 Bit schreiben (Schreiben des Einzelregisters)

Für den Zugriff auf 32 Bit Daten gibt es zwei weitere an den Frequenzumrichter angepasste Funktionskodes:

☐ Funktionskode 100 EINE Bitbreite 32 lesen

☐ Funktionskode 101 EINE Bitbreite 32 schreiben

Diese zwei Funktionen (nicht in den Modbus Beschreibungen enthalten) ermöglichen den Datenzugriff auf 32 Bit "Long-" Variablen im Frequenzumrichter.

Für Diagnosezwecke wird der Modbus Funktionskode "8" unterstützt.

Diese Funktionskodes und die entsprechenden Datenfelder sind ausführlich in den folgenden Kapiteln beschrieben.

Hinweis: In allen Datenfeldern mit mehr als einem Byte wird zuerst das höchstwertige Byte übertragen.

Im Kapitel 8 sind Beispieltelegramme für alle unterstützten Funktionskodes in den Übertragungsarten RTU und ASCII aufgeführt.

6.4.1 Funktionskode 3, 16-Bit-Parameter lesen

Dieser Funktionskode wird zum Lesen von Integer oder Unsigned Integer Werten aus dem Frequenzumrichter verwendet.

Anforderung:

Funktionskode	1 Byte	0x03
Startadresse (Datensatz / Para-Nr.)	2 Bytes	0x0000 – 0x963F
Registeranzahl	2 Bytes	0x0001 (immer)

Antwort:

Funktionskode	1 Byte	0x03
Byteanzahl	1 Byte	0x02 (immer)
Registerwert (Parameterwert)	2 Bytes	0 – 0xFFFF

Ausnahmebedingung Antwort:

Fehlerkode	1 Byte	0x83
Ausnahmebedingungscode	1 Byte	2, 3 oder 4

Startadresse

Dieses Feld wird genutzt, um die Parameternummer und die Datensatznummer zu speichern. Die Parameternummer liegt im Bereich von 0-1599 und wird in den 12 niederwertigen Bits gespeichert. Die Datensatznummer liegt im Bereich von 0-9 und wird in den 4 höherwertigen Bits gespeichert.

Zum Beispiel: Parameter **372** (hex. 0x174), Datensatz 2 (hex. 0x2) wird gespeichert als hex. 0x2174.

		Startadresse														
	Datensatz Parameternummer															
Bits	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
•	Für das obige Beispiel:															
Hex.	0	0	1	0	0	0	0	1	0	1	1	1	0	1	0	0
Bin.	2			1			7			4						

Registeranzahl

Dieses Feld wird genutzt, um die Anzahl der Parameter, die geschrieben werden sollen, zu speichern. Der Wert muss immer 1 sein, da jeweils nur ein Parameter geschrieben werden kann.

Byteanzahl

Dieses Feld muss auf 2 eingestellt werden, da der Parameterwert immer aus 2 Byte besteht.

Registerwert

Dieses Feld wird genutzt, um den 16-Bit Parameterwert zu speichern.

Hinweis: Paramete

Parameterwerte mit Dezimalstellen werden ohne Dezimalkomma übertragen. Abhängig von der Anzahl der Dezimalstellen werden die Werte mit 10, 100 oder 1000 multipliziert.

Beispiel:

Ein Stromwert von 10,3 A soll übertragen werden. Der tatsächlich übertragene Zahlenwert ist 103, was einem Hexadezimalwert von 0x67 entspricht.

Ausnahmebedingungskode

Die folgenden Ausnahmebedingungskodes können auftreten:

- 2 UNGÜLTIGE DATENADRESSE Wert des Feldes Registeranzahl ist nicht gleich 1
 - Parameter unbekannt
- 3 UNGÜLTIGER DATENWERT Anzahl der Bytes im Datenfeld zu klein oder zu groß
- 4 FEHLER SLAVE GERÄT Fehler beim Parameterlesen

6.4.2 Funktionskode 6, 16-Bit-Parameter schreiben

Dieser Funktionskode wird zum Schreiben von Integer oder Unsigned Integer Werten in den Frequenzumrichter verwendet.

Anforderung:

Funktionskode	1 Byte	0x06
Startadresse (Datensatz / Para-Nr.)	2 Bytes	0x0000 – 0x963F
Registerwert (Parameterwert)	2 Bytes	0 – 0xFFFF

Antwort:

Funktionskode	1 Byte	0x06
Startadresse (Datensatz / Para-Nr.)	2 Bytes	0x0000 – 0x963F
Registerwert (Parameterwert)	2 Bytes	0 – 0xFFFF

Ausnahmebedingung Antwort:

Fehlerkode	1 Byte	0x86
Ausnahmebedingungscode	1 Byte	2, 3 oder 4

Startadresse

Dieses Feld wird genutzt, um die Parameternummer und die Datensatznummer zu speichern. Die Parameternummer liegt im Bereich von 0 – 1599 und wird in den 12 niederwertigen Bits gespeichert. Die Datensatznummer liegt im Bereich von 0 - 9 und wird in den 4 höherwertigen Bits gespeichert.

Zum Beispiel: Parameter 372 (hex. 0x174), Datensatz 2 (hex. 0x2) wird gespeichert als hex. 0x2174.

		Startadresse											
		Date	nsatz		Parameternummer								
Bits	15	14	13	12	11	11 10 9 8 7 6 5 4 3 2 1 0							0

Registerwert

Dieses Feld wird genutzt, um den 16-Bit Parameterwert zu speichern.

Parameterwerte mit Dezimalstellen werden ohne Dezimalkomma übertragen. Abhängig von der Anzahl der Dezimalstellen werden die Werte mit 10, 100 oder 1000 multipliziert.

Beispiel:

Ein Stromwert von 10,3 A soll übertragen werden. Der tatsächlich übertragene Zahlenwert ist 103, was einem Hexadezimalwert von 0x67 entspricht.

Ausnahmebedingungskode

Die folgenden Ausnahmebedingungskodes können auftreten:

- UNGÜLTIGE DATENADRESSE Parameter unbekannt
- UNGÜLTIGER DATENWERT Anzahl der Bytes im Datenfeld zu klein oder zu groß 3
- FEHLER SLAVE GERÄT Fehler beim Parameterschreiben

6.4.3 Funktionskode 100, 32-Bit-Parameter lesen

Anforderung:

Funktionskode	1 Byte	0x64
Startadresse (Datensatz / Para-Nr.)	2 Bytes	0x0000 – 0x963F

Antwort:

Funktionskode	1 Byte	0x64
Registerwert (Parameterwert)	4 Bytes	0 – 0x FFFF FFFF

Ausnahmebedingung Antwort:

Fehlerkode	1 Byte	0xE4
Ausnahmebedingungscode	1 Byte	2, 3 oder 4

Startadresse

Dieses Feld wird genutzt, um die Parameternummer und die Datensatznummer zu speichern. Die Parameternummer liegt im Bereich von 0-1599 und wird in den 12 niederwertigen Bits gespeichert. Die Datensatznummer liegt im Bereich von 0-9 und wird in den 4 höherwertigen Bits gespeichert.

Zum Beispiel: Parameter **372** (hex. 0x174), Datensatz 2 (hex. 0x2) wird gespeichert als hex. 0x2174.

		Startadresse										
		Date	nsatz		Parameternummer							
Bits	15	14	13	12	11	11 10 9 8 7 6 5 4 3 2 1 0						

Registeranzahl

Dieses Feld wird genutzt, um die 32-Bit Parameterwerte zu speichern.

Hinweis: Parameterwerte mit Dezimalstellen werden ohne [

Parameterwerte mit Dezimalstellen werden ohne Dezimalkomma übertragen. Abhängig von der Anzahl der Dezimalstellen werden die Werte mit 10, 100 oder

1000 multipliziert.

Beispiel:

Ein Frequenzwert von 100,25 Hz soll übertragen werden. Der tatsächlich übertragene Zahlenwert ist 10025, was einem Hexadezimalwert von 0x2729 entspricht.

Ausnahmebedingungskode

Die folgenden Ausnahmebedingungskodes können auftreten:

2 UNGÜLTIGE DATENADRESSE • Parameter unbekannt

3 UNGÜLTIGER DATENWERT • Anzahl der Bytes im Datenfeld zu klein oder zu groß

4 FEHLER SLAVE GERÄT • Fehler beim Parameterlesen

6.4.4 Funktionskode 101, 32-Bit-Parameter schreiben

Anforderung:

Funktionskode	1 Byte	0x65
Startadresse (Datensatz / Para-Nr.)	2 Bytes	0x0000 – 0x963F
Registerwert (Parameterwert)	4 Bytes	0 – 0xFFFF FFFF

Antwort:

Funktionskode	1 Byte	0x65
Startadresse (Datensatz / Para-Nr.)	2 Bytes	0x0000 – 0x963F
Registerwert (Parameterwert)	4 Bytes	0 – 0xFFFF FFFF

Ausnahmebedingung Antwort:

Fehlerkode	1 Byte	0xE5
Ausnahmebedingungscode	1 Byte	2, 3 oder 4

Startadresse

Dieses Feld wird genutzt, um die Parameternummer und die Datensatznummer zu speichern. Die Parameternummer liegt im Bereich von 0-1599 und wird in den 12 niederwertigen Bits gespeichert. Die Datensatznummer liegt im Bereich von 0-9 und wird in den 4 höherwertigen Bits gespeichert.

Zum Beispiel: Parameter **372** (hex. 0x174), Datensatz 2 (hex. 0x2) wird gespeichert als hex. 0x2174.

		Startadresse										
		Date	nsatz		Parameternummer							
Bits	15	14	13	12	11 10 9 8 7 6 5 4 3 2 1 0						0	

Registerwert

Dieses Feld wird genutzt, um den 32-Bit Parameterwert zu speichern.

Parameterwerte mit Dezimalstellen werden ohne Dezimalkomma übertragen. Abhängig von der Anzahl der Dezimalstellen werden die Werte mit 10, 100 oder 1000 multipliziert.

Beispiel:

Hinweis:

Frequenzwert:

Ein Frequenzwert von 100,25 Hz soll übertragen werden. Der tatsächlich übertragene Zahlenwert ist 10025, was einem Hexadezimalwert von 0x2729 entspricht.

Ausnahmebedingungskode

Die folgenden Ausnahmebedingungskodes können auftreten:

- 2 UNGÜLTIGE DATENADRESSE Parameter unbekannt
- 3 UNGÜLTIGER DATENWERT Anzahl der Bytes im Datenfeld zu klein oder zu groß
- 4 FEHLER SLAVE GERÄT Fehler beim Parameterlesen

6.4.5 Funktionskode 8, Diagnose

Dieser Funktionskode wird genutzt, um auf den Modbus Diagnosezähler des Frequenzumrichters zuzugreifen. Jeder Zähler kann über einen Unterfunktionskode zusammen mit der Zählernummer erreicht werden. Jeder Zähler kann durch den hexadezimalen Unterfunktionskode 0x0A gelöscht werden.

Die folgenden Unterfunktionskodes werden unterstützt:

Unter- funkti- on	Name	Beschreibung
0x0A	Alle Zähler löschen	Setzt alle Zähler auf 0
OxOB	Anzahl Busnachrichten zurückgeben	Anzahl der empfangenen gültigen Nachrichten (mit allen Adressen)
0x0C	Anzahl Busübertragungsfehler zurückgeben	Anzahl der Nachrichten mit CRC oder Paritäts- /Blockprüfungs-/Datenverlustfehler
0x0D	Anzahl Bus Ausnahmefehler zu- rückgeben	Anzahl der gesendeten Ausnahmeantworten
0x0E	Anzahl Slave Nachrichten zu- rückgeben	Anzahl der empfangenen Nachrichten (mit Slave Adresse)
0x0F	Anzahl "Slave – keine Antwort" Nachrichten zurückgeben	Anzahl der empfangenen Broadcast Nachrichten
0x10	Anzahl Slave NAK (negative Empfangsbestätigung) zurückge- ben	Nicht verwendet, Rückgabewert ist immer 0
0x11	Anzahl "Slave beschäftigt" zu- rückgeben	Nicht verwendet, Rückgabewert ist immer 0
0x12	Anzahl Datenverlustfehler Buszei- chen zurückgeben	Anzahl der Nachrichten mit Datenverlustfehlern

Anforderung (Unterfunktion 0x0A, Alle Zähler löschen):

Funktionskode	1 Byte	0x08
Unterfunktion	2 Bytes	0x000A
Daten	2 Bytes	0x0000

Antwort:

Funktionskode	1 Byte	0x08	
Unterfunktion	2 Bytes	0x000A	
Daten	2 Bytes	0x0000	

Ausnahmebedingung Antwort:

Fehlerkode	1 Byte	0x88	
Ausnahmebedingungscode	1 Byte	1, 3 oder 4	

Daten

Dieses Feld ist immer 0x0000.

Ausnahmebedingungskode

1 UNGÜLTIGER FUNKTIONS-KODE

Unterfunktion wird nicht unterstützt

3 UNGÜLTIGER DATENWERT

• Anzahl der Bytes im Datenfeld zu klein oder zu groß

• "Datenfeld" nicht gleich 0x0000

4 FEHLER SLAVE GERÄT

Fehler beim Ausführen der Funktion

Ausnahmebedingungskodes sind ausführlich im Kapitel 6.6 beschrieben.

Anforderung (Unterfunktion 0x0B – 0x12, Zählerwert zurückgeben):

Funktionskode	1 Byte	0x08
Unterfunktion	2 Bytes	0x000B – 0x0012
Daten	2 Bytes	0x0000

Antwort:

Funktionskode	1 Byte	0x08
Unterfunktion	2 Bytes	0x000B – 0x0012
Daten (Zählerwert)	2 Bytes	0 – 0xFFFF

Ausnahmebedingung Antwort:

Fehlerkode	1 Byte	0x88		
Ausnahmebedingungscode	1 Byte	1, 3 oder 4		

Daten

In der Anforderung ist dieses Feld immer auf 0x0000 gesetzt und enthält in der Antwort den aktuellen Zählerwert.

Ausnahmebedingungskode

Die folgenden Ausnahmebedingungskodes können auftreten:

1 UNGÜLTIGER FUNKTIONS-KODF

Unterfunktion wird nicht unterstützt

3 UNGÜLTIGER DATENWERT

Anzahl der Bytes im Datenfeld zu klein oder zu groß

• "Datenfeld" nicht gleich 0x0000

4 FEHLER SLAVE GERÄT

Fehler beim Lesen des Diagnosezählers

6.5 Ausnahmebedingungsantworten

Das Mastergerät erwartet eine normale Antwort, wenn es eine Anforderung an den Frequenzumrichter sendet. Auf die Anforderung des Masters kann eine von vier Reaktionen erfolgen:

- Falls der Frequenzumrichter die Anforderung ohne Übertragungsfehler empfängt, kann er diese normal bearbeiten und eine normale Antwort senden.
- Falls der Frequenzumrichter die Anforderung aufgrund eines Übertragungsfehlers nicht empfängt, sendet er keine Antwort. Der Master wird auf die Bedingungen für die Zeit- überwachung der Anforderung prüfen.
- Falls der Frequenzumrichter die Anforderung empfängt und einen Übertragungsfehler feststellt (Parität, LCR, CRC, ...), sendet er keine Antwort. Der Master wird auf die Bedingungen für die Zeitüberwachung der Anforderung prüfen.
- Falls der Frequenzumrichter die Anforderung ohne Übertragungsfehler empfängt und diesen nicht bearbeiten kann, zum Beispiel, weil ein unbekannter Parameter gelesen werden soll, sendet er eine Ausnahmeantwort mit einer Information über die Art des Fehlers.

Die Ausnahmebedingungsantwort hat zwei Felder, die sich von der normalen Antwort unterscheiden:

Funktionskodefeld:

In einer normalen Antwort erfolgt eine Rückmeldung des Frequenzumrichters mit dem Funktionskode der ursprünglichen Anforderung. Alle Funktionskodes haben eine 0 als höchstwertiges Bit (most-significant bit, MSB); ihre Werte liegen unter dem Hexadezimalwert 0x80. In einer Ausnahmebedingungsantwort setzt der Frequenzumrichter das höchstwertige Bit des Funktionskodes auf den Wert 1. Dies erhöht den Hexadezimalwert des Funktionskodes in einer Ausnahmebedingungsantwort um 0x80 im Vergleich zu dem Wert in einer normalen Antwort. Mit dem Setzen des höchstwertigen Bit im Funktionskode kann der Master die Ausnahmeantwort erkennen und den Ausnahmebedingungskode im Datenfeld untersuchen.

Datenfeld:

In einer normalen Antwort sendet der Frequenzumrichter Daten oder statistische Werte im Datenfeld (jede Information, die angefragt wurde). In einer Ausnahmebedingungsantwort sendet der Frequenzumrichter einen Ausnahmebedingungskode im Datenfeld. Dieser bestimmt die Ursache der Ausnahmebedingung.

Die vom Frequenzumrichter erzeugten Ausnahmebedingungskodes sind unten aufgelistet.

6.6 Ausnahmebedingungskodes

Der Frequenzumrichter erzeugt die folgenden Ausnahmebedingungskodes:

Kode	Modbus Name	Ursachen für die Erzeugung durch den Frequenzumrichter			
1	UNGÜLTIGE FUNKTION	Funktionskode unbekanntUnterfunktionskode unbekannt (Diagnosefunktion)			
2	UNGÜLTIGE DATENADRESSE	Registeranzahl fehlerhaft (muss immer 0x01 sein) Unbekannter Parameter oder Datentyp des Parameters unzutreffend			
3	UNGÜLTIGER DATENWERT	 Fehler Blockprüfung Anzahl der Bytes zu klein oder zu groß Bestimmte Felder nicht auf typische Werte gesetzt 			
4	FEHLER SLAVE GERÄT	Lesen oder Schreiben von Parametern erfolglos Die Ursache des Fehlers kann über Auslesen des Parameters VA- Bus SST Error Register 11 untersucht werden (siehe nächste Seite).			

	VABus SST Error Register 11						
Fehlernr.	Bedeutung						
0	Kein Fehler						
1	Unzulässiger Parameterwert						
2	Unzulässiger Datensatz						
3	Parameter nicht lesbar (nur schreibbar)						
4	Parameter nicht schreibbar (nur lesbar)						
5	Lesefehler EEPROM						
6	Schreibfehler EEPROM						
7	Prüfsummenfehler EEPROM						
8	Parameter kann nicht geschrieben werden, während der Antrieb läuft						
9	Werte der Datensätze unterscheiden sich voneinander						
10	Falscher Parametertyp						
11	Unbekannter Parameter						
12	Prüfsummenfehler im empfangenen Telegramm						
13	Syntaxfehler im empfangenen Telegramm						
14	Datentyp des Parameters stimmt nicht mit der Anzahl der Bytes im Telegramm überein						
15	Unbekannter Fehler						

Wenn das Fehlerregister *VABus SST Error Register* **11** ausgelesen wird, wird es automatisch zeitgleich gelöscht.

6.7 Die zwei Betriebsarten zur seriellen Übertragung

Zwei unterschiedliche Betriebsarten zur seriellen Übertragung sind definiert: Die Betriebsarten **RTU** und **ASCII**. Sie beschreiben den bitweisen Inhalt von Nachrichtenfeldern für die serielle Übertragung. Sie legen fest, wie Informationen in den Nachrichtenfeldern abgelegt und dekodiert werden.

Die Betriebsart (und serielle Schnittstellenparameter) müssen für alle Geräte am Modbus gleich sein.

6.7.1 RTU Übertragung

Wenn Geräte in der Betriebsart RTU (Remote Terminal Unit) über einen Modbus kommunizieren, besteht jedes Byte (8 Bit) in der Nachricht aus zwei 4-Bit Hexadezimalzeichen. Der bedeutendste Vorteil dieser Betriebsart ist, dass eine größere Zeichendichte einen höheren Datendurchsatz im Vergleich zur ASCII Betriebsart bei gleicher Baudrate ermöglicht. Beide Nachrichten müssen mit einem kontinuierlichen Zeichenfluss übertragen werden.

6.7.1.1 Zeichenformat

Ein Zeichen besteht aus 11 Bits.

	1 Startbit
	8 Datenbits, niederwertigstes Bit wird zuerst gesendet
	1 Paritätsbit
	1 Stoppbit

Hinweis: Wird keine Parität genutzt, wird ein zusätzliches Stoppbit hinzugefügt.

Zeichenformat mit Paritätsprüfung:

Start	B1	B2	В3	B4	B5	В6	В7	B8	Pari- tät	Stopp
-------	----	----	----	----	----	----	----	----	--------------	-------

Zeichenformat ohne Paritätsprüfung:

Start	B1	B2	В3	B4	B5	В6	В7	B8	Stopp	Stopp
-------	----	----	----	----	----	----	----	----	-------	-------

6.7.1.2 Telegrammbeschreibung

Slave	Funkti-	Daten	CRC (zyklische Blockprü-
Adresse	onskode		fung)
1 Byte	1 Byte	0 bis 252 Bytes	2 Bytes (CRC-Lo, CRC-Hi)

Die maximale Länge eines Modbus RTU Telegramms ist 256 Bytes.

6.7.1.3 Modbus RTU Nachrichtentelegramm

Eine Modbus Nachricht wird von einem sendenden Gerät in ein Telegramm gefügt, das einen festgelegten Anfangs- und Endpunkt hat. Dies ermöglicht empfangenden Geräten den Beginn und das Ende der Nachricht zu erkennen. Teilnachrichten müssen erkannt und als Ergebnis ein Fehler gesetzt werden. In der Betriebsart RTU werden Nachrichtentelegramme durch ein Ruheintervall von mindestens 3,5 Zeichen voneinander getrennt.

MODBUS Nachricht

Start	Adresse	Funktion	Daten	CRC
>= 3,5 Zei- chen	8 Bits	8 Bits	N x 8 Bits	16 Bits

Ende	
>= 3,5 Zeichen	

Das gesamte Nachrichtentelegramm muss als zusammenhängender Zeichenfluss übertragen werden.

Falls ein Ruheintervall von mehr als 1,5 Zeichen zwischen zwei Zeichen auftritt, wird das Nachrichtentelegramm als unvollständig gekennzeichnet und vom Frequenzumrichter verworfen.

6.7.1.4 CRC Prüfung

Die Betriebsart RTU enthält ein Fehlerprüffeld, welches auf einer zyklischen Blockprüfung (CRC – Cyclic Redundancy Check) der Nachrichteninhalte basiert.

Das CRC-Feld prüft den Inhalt der gesamten Nachricht. Dies wird ungeachtet einer Paritätsprüfung durchgeführt, welche die einzelnen Zeichen der Nachricht prüft.

Das CRC-Feld enthält einen 16-Bit Wert, ausgeführt als zwei Bytes (je 8 Bit).

Das CRC-Feld wird als letztes Feld an die Nachricht angehängt. Es wird in der Reihenfolge "niederwertiges Byte", "höherwertiges Byte" angefügt. Das CRC höherwertige Byte ist das letzte Byte, das mit der Nachricht gesendet wird.

Der CRC-Wert wird vom sendenden Gerät berechnet und an die Nachricht angehängt. Das empfangende Gerät berechnet während des Empfangs der Nachricht einen CRC-Wert und vergleicht den berechneten Wert mit dem aktuell empfangenen Wert des CRC-Feldes. Sind die beiden Werte nicht gleich, wird ein Fehler ausgelöst.

Die CRC Berechnung beginnt mit dem Anfangsladen eines 16-Bit Registers mit allen Einerkomplementen (OxFFFF). Danach werden nacheinander die Bytes der Nachricht mit dem aktuellen Inhalt des Registers verknüpft.

Während der Erzeugung des CRC wird jedes 8-Bit Zeichen über eine ExOR (Exclusiv-ODER)-Funktion mit dem Registerinhalt verknüpft. Das Ergebnis wird in Richtung des niederwertigsten Bit (LSB – least significant bit) geschoben und eine Null in das höherwertigste Bit (MSB – most significant bit) geschrieben. Das niederwertigste Bit (LSB) wird herausgezogen und geprüft. Falls das LSB eine 1 ist, wird das Register mit dem festen Wert *OxA001* EXORverknüpft. Falls das LSB eine 0 ist, erfolgt keine ExOR-Verknüpfung.

Dieser Ablauf wird wiederholt, bis acht Verschiebungen durchgeführt wurden. Nach der letzten (der achten) Verschiebung wird das nächste 8-Bit Zeichen mit dem aktuellen Registerwert ExOR-verknüpft; der Ablauf wird acht mal wiederholt, wie oben beschrieben. Der endgültige Inhalt des Registers nach dem Durchlauf aller Bytes der Nachricht ist der CRC-Wert.

Zuerst wird das niederwertige Byte und dann das höherwertige Byte des CRC-Wertes an die Nachricht angehängt.

Beispiel für die Berechnung von CRC-Werten für das Telegramm: "0x02 0x07"

Bolopiol fai ale Bell	AACD			LCD	
Chart CDC	MSB 1111	1111	1111	LSB 1111	OVEEEE
Start CRC			1111		0xFFFF
1.Zeichen	0000	0000	0000	0010	0x02
ExOR	1111	1111	1111	1101	_
CRC	1111	1111	1111	1101	-4 F.OD
1.Schieben rechts	0111	1111	1111	1110	•1 = ExOR
0xA001	1010	0000	0000	0001	
ExOR	4404				_
CRC	1101	1111	1111	1111	
2.Schieben rechts	0110	1111	1111	1111	
0xA001	1010	0000	0000	0001	
ExOR					_
CRC	1100	1111	1111	1110	
3.Schieben rechts	0110	0111	1111	1111	●0 = kein ExOR
4.Schieben rechts	0011	0011	1111	1111	•1 = ExOR
0xA001	1010	0000	0000	0001	
ExOR					_
CRC	1001	0011	1111	1110	
5.Schieben rechts	0100	1001	1111	1111	●0 = kein ExOR
6.Schieben rechts	0010	0100	1111	1111	•1 = ExOR
0xA001	1010	0000	0000	0001	
ExOR					_
CRC	1000	0100	1111	1110	
7.Schieben rechts	0100	0010	0111	1111	●0 = kein ExOR
8.Schieben rechts	0010	0001	0011	1111	•1 = ExOR
0xA001	1010	0000	0000	0001	
ExOR					_
CRC	1000	0001	0011	1110	
2.Zeichen	0000	0000	0000	0111	0x07
ExOR					_
CRC	1000	0001	0011	1001	
1.Schieben rechts	0100	0000	1001	1100	•1 = ExOR
0xA001	1010	0000	0000		
ExOR			0000	0001	
			0000	0001	<u></u>
CRC	1110	0000	1001	1101	_
2.Schieben rechts	1110 0111	0000			•1 = ExOR
			1001	1101	•1 = ExOR
2.Schieben rechts 0xA001	0111	0000	1001 0100	1101 1110	•1 = ExOR
2.Schieben rechts	0111	0000	1001 0100	1101 1110	•1 = ExOR
2.Schieben rechts 0xA001 ExOR	0111 1010 —	0000 0000	1001 0100 0000	1101 1110 0001	•1 = ExOR •1 = ExOR
2.Schieben rechts 0xA001 ExOR CRC	0111 1010 —————————————————————————————	0000	1001 0100 0000	1101 1110 0001	_
2.Schieben rechts 0xA001 ExOR CRC 3.Schieben rechts	0111 1010 1101 0110	0000 0000 0000 1000	1001 0100 0000 0100 0010	1101 1110 0001 1111 0111	_
2.Schieben rechts 0xA001 ExOR CRC 3.Schieben rechts 0xA001	0111 1010 1101 0110	0000 0000 0000 1000	1001 0100 0000 0100 0010	1101 1110 0001 1111 0111	_
2.Schieben rechts 0xA001 ExOR CRC 3.Schieben rechts 0xA001 ExOR	0111 1010 1101 0110 1010	0000 0000 0000 1000 0000	1001 0100 0000 0100 0010 0000	1101 1110 0001 1111 0111 0001	_
2.Schieben rechts 0xA001 ExOR CRC 3.Schieben rechts 0xA001 ExOR CRC	0111 1010 1101 0110 1010 1100	0000 0000 0000 1000 0000	1001 0100 0000 0100 0010 0000	1101 1110 0001 1111 0111 0001	•1 = ExOR
2.Schieben rechts 0xA001 ExOR CRC 3.Schieben rechts 0xA001 ExOR CRC 4.Schieben rechts	0111 1010 	0000 0000 0000 1000 0000	1001 0100 0000 0100 0010 0000 0010 0001	1101 1110 0001 1111 0111 0001 0110 0011	•1 = ExOR •0 = kein ExOR
2.Schieben rechts 0xA001 ExOR CRC 3.Schieben rechts 0xA001 ExOR CRC 4.Schieben rechts 5.Schieben rechts	0111 1010 	0000 0000 0000 1000 0000 1000 0100 0010	1001 0100 0000 0100 0010 0000 0010 0001 0000	1101 1110 0001 1111 0111 0001 0110 0011 1001	•1 = ExOR •0 = kein ExOR
2.Schieben rechts 0xA001 ExOR CRC 3.Schieben rechts 0xA001 ExOR CRC 4.Schieben rechts 5.Schieben rechts 0xA001	0111 1010 	0000 0000 0000 1000 0000 1000 0100 0010	1001 0100 0000 0100 0010 0000 0010 0001 0000	1101 1110 0001 1111 0111 0001 0110 0011 1001	•1 = ExOR •0 = kein ExOR
2.Schieben rechts 0xA001 ExOR CRC 3.Schieben rechts 0xA001 ExOR CRC 4.Schieben rechts 5.Schieben rechts 0xA001 ExOR CRC 4.Schieben rechts 6.Schieben rechts 0xA001 ExOR CRC	0111 1010 	0000 0000 0000 1000 0000 1000 0100 0010	1001 0100 0000 0100 0010 0000 0010 0001 0000 0000	1101 1110 0001 1111 0111 0001 0110 0011 1001 0001	•1 = ExOR •0 = kein ExOR
2.Schieben rechts 0xA001 ExOR CRC 3.Schieben rechts 0xA001 ExOR CRC 4.Schieben rechts 5.Schieben rechts 0xA001 ExOR CRC 6.Schieben rechts	0111 1010 	0000 0000 0000 1000 0000 1000 0100 0010 0010 1001	1001 0100 0000 0100 0010 0000 0001 0000 0000 0000	1101 1110 0001 1111 0111 0001 0110 0011 1001 0001 1000 0100	•1 = ExOR •0 = kein ExOR •1 = ExOR
2.Schieben rechts 0xA001 ExOR CRC 3.Schieben rechts 0xA001 ExOR CRC 4.Schieben rechts 5.Schieben rechts 0xA001 ExOR CRC 6.Schieben rechts 7.Schieben rechts	0111 1010 1101 0110 1010 1100 0110 0011 1010 1001 0100 0010	0000 0000 0000 1000 0000 1000 0100 0010 0010 1001 0100	1001 0100 0000 0100 0010 0000 0001 0000 0000 0000 0000 1000	1101 1110 0001 1111 0111 0001 0110 0011 1001 0001 1000 0100 0010	•1 = ExOR •0 = kein ExOR •1 = ExOR •0 = kein ExOR •0 = kein ExOR
2.Schieben rechts 0xA001 ExOR CRC 3.Schieben rechts 0xA001 ExOR CRC 4.Schieben rechts 5.Schieben rechts 0xA001 ExOR CRC 6.Schieben rechts	0111 1010 	0000 0000 0000 1000 0000 1000 0100 0010 0010 1001	1001 0100 0000 0100 0010 0000 0001 0000 0000 0000	1101 1110 0001 1111 0111 0001 0110 0011 1001 0001 1000 0100	•1 = ExOR •0 = kein ExOR •1 = ExOR •0 = kein ExOR

Beispiel: Programmfolge(C#)

```
private int Modbus_CRC(string frame)
int poly = 0xA001;
                                    // polynom
int CRC = 0xFFFF;
                                    // start CRC
for (int i = 0; i < (int)(frame.Length); i++)
                                           // für jedes Zeichen
 CRC ^= Convert.ToInt16(frame[i]);
                                             // ExOR
 for (int j = 0; j < 8; j++)
                                    // acht mal
  if ((CRC & 0x01) == 0x01) // lsb == 1?
    CRC >>= 1;
                                             // schieben links
    CRC ^= poly;
                                             // ExOR
   else
   {
    CRC >>= 1;
                                             // schieben links
  }
 }
}
return CRC;
```

Aufruf der Funktion für das Telegramm: "0x02 0x07"

```
string\ temp\_s = Convert.ToString((char)(0x2)) + Convert.ToString((char)(0x7));
```

Console.WriteLine(Modbus_CRC(temp_s));

Ergebnis: 4673 = 0x1241

CRC niederwertiges Byte (low byte) = 0x41CRC höherwertiges Byte (high byte) = 0x12

Die Modbus CRC Abfolge ist:

6.7.2 ASCII Übertragung

Wenn Geräte für die Datenübertragung über ein Modbus Telegramm in der Betriebsart 7-Bit ASCII (American Standard Code for Information Interchange) eingerichtet werden, wird jedes 8-Bit Zeichen in einer Nachricht als zwei ASCII Zeichen gesendet. Diese Betriebsart wird verwendet, wenn der physikalische Datenübertragungskanal oder die Leistungsfähigkeit des Gerätes nicht den Anforderungen hinsichtlich der zeitlichen Bearbeitung in der Betriebsart RTU entsprechen.

Hinweis: Diese Betriebsart ist weniger leistungsfähig als RTU, da jedes Byte zwei Zeichen benötigt.

Beispiel: Das Byte 0x5B wird als zwei Zeichen kodiert: 0x35 und 0x42 ($0x35 = _{,}5$ ", und $0x42 = _{,}B$ " in ASCII).

6.7.2.1 Zeichenformat

Ein Zeichen besteht aus 10 Bits:

1 Startbit
7 Datenbits, niederwertigstes Bit wird zuerst gesendet (Wert = 0x00 0x7F)
1 Paritätsbit
1 Stoppbit

Hinweis: Wird keine Parität genutzt, wird ein zusätzliches Stoppbit hinzugefügt.

Zeichenformat mit Paritätsprüfung:

Sta	t B1		B2	В3	B4	B5	В6	В7	Parität	Stopp
Zeich	Zeichenformat ohne Paritätsprüfung:									
Sta	t B1		B2	В3	B4	B5	В6	B7	Stopp	Stopp

6.7.2.2 Modbus ASCII Nachrichtentelegramm

Eine Modbus Nachricht wird von einem sendenden Gerät in ein Telegramm eingefügt, das einen festgelegten Anfangs- und Endpunkt hat. Dies ermöglicht empfangenden Geräten den Beginn und das Ende der Nachricht zu erkennen. Teilnachrichten müssen erkannt und als Ergebnis ein Fehler gesetzt werden.

Das Adressfeld eines Nachrichtentelegramms enthält zwei Zeichen.

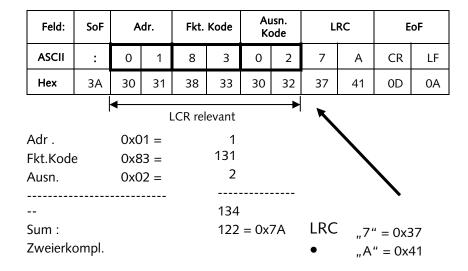
In der Betriebsart ASCII ist eine Nachricht durch bestimmte Zeichen für Telegrammbeginn (SoF – Start-of-Frame) und Telegrammende begrenzt. Eine Nachricht muss mit einem einleitenden Doppelpunkt-Zeichen (":" = ASCII 0x3A) beginnen und mit einem Wagenrücklauf/Zeilenvorschub (CRLF)-Zeichenpaar (ASCII 0x0D und 0x0A) enden.

Die zulässigen Zeichen für die zu übertragenden anderen Felder sind hexadezimal 0 - 9, A - F (ASCII kodiert). Die Geräte überwachen den Bus ständig auf das Doppelpunkt-Zeichen. Wird dieses Zeichen empfangen, kodiert jedes Gerät das nächste Zeichen, bis das Telegrammendezeichen (EoF – End-of-Frame) erkannt wird.

Zeitabschnitte von bis zu einer Sekunde dürfen zwischen Zeichen der Nachricht vergehen. Wenn der Anwender keine längere Auszeit einstellt, wird bei einem Zeitabschnitt von mehr als 1 Sekunde ein Fehler ausgelöst.

Ein typisches Nachrichtentelegramm.

SoF	Adresse	Funktion	Daten	LRC	EoF
1 Zeichen :	2 Zeichen	2 Zeichen	0 bis zu 2* 252 Zeichen	2 Zeichen	2 Zeichen CR, LF


6.7.2.3 LRC Prüfung

In der Betriebsart ASCII enthalten Nachrichten ein Fehlerprüffeld, das auf einer Längsprüfung (LRC – Longitudinal Redundancy Checking) basiert. Die Berechnung wird mit dem Nachrichteninhalt durchgeführt, außer dem einleitenden Doppelpunkt und dem abschließenden CRLF-Zeichenpaar. Dies wird ungeachtet einer Paritätsprüfung durchgeführt, welche die einzelnen Zeichen der Nachricht prüft.

Das LRC-Feld besteht aus einem Byte (8-Bit Binärwert). Der LRC-Wert wird vom sendenden Gerät berechnet und an die Nachricht angehängt. Das empfangende Gerät berechnet während des Empfangs der Nachricht einen LRC-Wert und vergleicht den berechneten Wert mit dem aktuell empfangenen Wert des LRC-Feldes. Sind die beiden Werte nicht gleich, wird ein Fehler ausgelöst.

Der LRC-Wert wird berechnet, indem nacheinander jedes Byte der Nachricht addiert wird und dann das Zweierkomplement des Ergebnisses gebildet wird. Die Berechnung wird mit dem ASCII Nachrichteninhalt durchgeführt, ausgenommen dem einleitenden Doppelpunkt und dem abschließenden CRLF-Zeichenpaar. In der Betriebsart ASCII wird der erhaltene LRC-Wert in zwei Bytes ASCII kodiert und an das Ende des ASCII Nachrichtentelegramms – vor CRLF – angehängt.

Beispiel:

6.8 Zeitüberwachungsfunktion

Das Modbus Protokoll definiert einen reinen Master/Slave Betrieb. Wird ein Frequenzumrichter vom Bus-Master angesprochen, wird ein weiterer Frequenzumrichter erst dann angesprochen, wenn das Protokoll mit dem ersten Frequenzumrichter vollständig abgewickelt oder die Time-Out-Zeit abgelaufen ist.

Nachdem ein Frequenzumrichter ein Telegramm gesendet hat, muss eine Wartezeit von min. **2 ms** eingehalten werden, die der Frequenzumrichter benötigt, um den RS485-Sender auszuschalten. Erst danach darf der Bus-Master ein neues Telegramm senden.

Der Frequenzumrichter antwortet frühestens **10 ms** nach Erhalt eines Telegramms. Das bedeutet, dass der Bus-Master seinen RS485-Sender nach spätestens 10 ms abgeschaltet haben muss.

Erhält der Bus-Master nach einer Zeit von **500 ms** vom Frequenzumrichter keine Antwort, kann er eine neue Übertragung an einen beliebigen Frequenzumrichter beginnen.

Achtung! Bei hoher CPU-Auslastung (> 90%) kann die Antwortzeit vom Umrichter größer

als 500 ms werden.

Hinweis: Die angegebenen Zeiten gelten für den RS485 Betrieb und den RS232 Betrieb.

6.9 Watchdog Überwachungsfunktion

Wird der Frequenzumrichter über die serielle Schnittstelle (RS232, RS485) betrieben, ist es eventuell wichtig, das Vorhandensein der Kommunikationsstrecke zu überwachen. Es kann zum Beispiel sein, dass der Frequenzumrichter im Remote-Betrieb ein-/ausgeschaltet wird, oder aber nur seinen Sollwert zyklisch über die serielle Schnittstelle erhält. Fällt die Kommunikation aus, werden keine oder fehlerhafte Daten übertragen. Dieser Zustand wird vom Kommunikations-Watchdog erkannt.

Die Watchdog-Funktion überwacht die Zeit, innerhalb der keine korrekte Kommunikation stattfindet. Diese Zeit ist über den Parameter *RS232/RS485 Watchdog Timer* **413** einstellbar. Der Einstellwert ist die Zeit in Sekunden (Bereich 0 ... 10000 Sekunden), innerhalb der mindestens ein korrekter Datenaustausch erfolgt sein muss.

Wird die eingestellte Überwachungszeit erreicht, geht der Frequenzumrichter in Störung. Die Störungsmeldung ist **F2010 Watchdog RS232/RS485**.

	Parameter	Settings			
No.	Name/Meaning	Min.	Max.	Fact. sett.	
413	RS232/RS485 Watchdog Timer [sec]	0	10000	0	

Hinweis: Wird der Parameter *RS232/RS485 Watchdog Timer* **413** = 0 gesetzt

(Werkseinstellung), ist die Überwachungsfunktion deaktiviert.

7 Handhabung der Datensätze/zyklisches Schreiben

Der Zugriff auf die Parameterwerte erfolgt anhand der Parameternummer und des gewünschten Datensatzes.

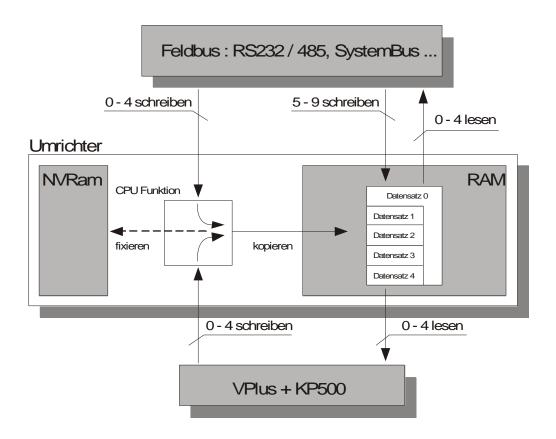
Es existieren Parameter, deren Werte einmal vorhanden sind (Datensatz 0), sowie Parameter, deren Werte viermal vorhanden sind (Datensatz 1 ... 4). Diese werden für die Datensatzumschaltung genutzt.

Werden Parameter, die viermal in den Datensätzen vorhanden sind, mit der Vorgabe Datensatz = 0 beschrieben, werden alle vier Datensätze auf den gleichen übertragenen Wert gesetzt.

Ein Lesezugriff mit Datensatz = 0 auf derartige Parameter gelingt nur dann, wenn alle vier Datensätze auf dem gleichen Wert eingestellt sind. Ist dies nicht der Fall, wird über das Fehler-Register *VABus SST-Error-Register* **11** der Fehler 9 = "Werte der Datensätze unterscheiden sich" gemeldet.

In diesem Fall muss für den betreffenden Parameter jeder Datensatz separat ausgelesen werden.

Der Eintrag der Werte erfolgt auf dem Controller automatisch in das EEPROM. Sollen Werte zyklisch mit hoher Wiederholrate geschrieben werden, darf kein Eintrag in das EEPROM erfolgen, da dieses nur eine begrenzte Anzahl zulässiger Schreibzyklen besitz (ca. 1 Millionen Zyklen).


Vorsicht! Wird die Anzahl zulässiger Schreibzyklen überschritten, kommt es zur Zerstörung des EEPROM's.

Um die Zerstörung des EEPROM's zu vermeiden, können zyklisch zu schreibende Daten exklusiv ins RAM eingetragen werden, ohne dass ein Schreibzyklus auf das EEPROM erfolgt. In diesem Fall sind die Daten flüchtig gespeichert und gehen nach Abschalten der Versorgungsspannung verloren. Sie müssen nach dem Wiedereinschalten (Netz-Ein) erneut ins RAM geschrieben werden.

Der Schreibvorgang ins RAM wird dadurch aktiviert, dass die Nummer des Zieldatensatzes um fünf erhöht wird.

Zugriff auf die Datensätze des Frequenzumrichters									
Parameter	EEPROM	RAM							
Datensatz 0	0	5							
Datensatz 1	1	6							
Datensatz 2	2	7							
Datensatz 3	3	8							
Datensatz 4	4	9							

Hinweis: Die Datensätze für die Parameter *Steuerwort* 410, *Frequenzsollwert RAM* 484 und *Prozentsollwert RAM* 524 sind immer Null. Intern werden diese nicht ins EEPROM geschrieben.

8 Modbus Beispieltelegramme

8.1 Modbus RTU-Nachrichten Beispiele

8.1.1 Funktionskode 3, 16-Bit Parameter lesen

Beispiel 1:

Lesen des Parameters *Bemessungsdrehzahl* **372** (0x0174) im Datensatz 2 vom Frequenzumrichter mit der Adresse 1.

Anforderung: Master → Frequenzumrichter

Feld:	Adr.	Funk.	DSatz/	DSatz/Par-Nr. R		Registeranzahl		CRC	
Hex	01	03	21	74	00	01	CE	2C	

Antwort: Frequenzumrichter → Master

Feld:	Adr.	Funk.	Anz.Bytes	Par-Wert		CRC	
Hex	01	03	02	05	6E	3A	F8

Der gesendete Hexadezimalwert ist 0x056E = Dezimal 1390. Der Parameter *Bemessungs-drehzahl* **372** hat keine Nachkommastelle.

Somit ist die Bemessungsdrehzahl 1390 min⁻¹.

Beispiel 2:

Lesen des Parameters *Bemessungsdrehzahl* **372** (0x0174) im Datensatz 0 vom Frequenzumrichter mit der Adresse 1 und Registeranzahl auf 2 (unzulässiger Wert) gesetzt.

Anforderung: Master → Frequenzumrichter

Feld:	Adr.	Funk.	DSatz/	Par-Nr.	Registeranzahl		CRC	
Hex	01	03	01	74	00	02	85	ED

Fehlerantwort: Frequenzumrichter → Master

Feld:	Adr.	Funk.	Ausn.	CI	RC
Hex	01	83	02	C0	F1

Der gesendete Ausnahmebedingungscode ist der hexadezimale Wert 0x02 = UNGÜLTIGE DATENADRESSE.

8.1.2 Funktionskode 6, 16-Bit Parameter schreiben

Beispiel 1:

Schreiben des Parameters *Mech. Bemessungsleistung* **376** (0x0178) in Datensatz 4 des Frequenzumrichters mit der Adresse 3.

Die mechanische Bemessungsleistung soll auf 1,5 kW gesetzt werden. Parameter *Mech. Bemessungsleistung* **376** hat eine Dezimalstelle.

Somit ist der zu sendende Wert 15 = 0x000F.

Anforderung: Master → Frequenzumrichter

Feld:	Adr.	Funk.	DSatz/Par-Nr.		Par-Wert		CRC	
Hex	03	06	41	78	00	OF	5C	09

Antwort: Frequenzumrichter → Master

Feld:	Adr.	Funk.	DSatz/Par-Nr.		Par-Wert		CRC	
Hex	03	06	41	78	00	OF	5C	09

Die Antwort ist das reflektierte Signal der Anforderungsnachricht.

Beispiel 2:

Schreiben des unzulässigen Wertes 0 in den Parameter *Mech. Bemessungsleistung* **376** (0x0178) im Datensatz 2 des Frequenzumrichters mit der Adresse 3.

Anforderung: Master → Frequenzumrichter

Feld:	Adr.	Funk.	DSatz/Par-Nr.		Par-Wert		CRC	
Hex	03	06	21	78	00	00	02	0D

Fehlerantwort: Frequenzumrichter → Master

Feld:	Adr.	Funk.	Ausn.	CI	RC
Hex	03	86	04	E2	63

Der gesendete Ausnahmebedingungskode ist der hexadezimale Wert 0x04 = FEHLER SLAVE GERÄT.

8.1.3 Funktionskode 100, 32-Bit Parameter lesen

Beispiel 1:

Lesen des Parameters *Festfrequenz 2* **481** im Datensatz 0 vom Frequenzumrichter mit der Adresse 1.

Anforderung: Master → Frequenzumrichter

Feld:	Adr.	Funk.	DSatz/Par-Nr.		CRC	
Hex	01	64	01	E1	81	DF

Antwort: Frequenzumrichter → Master

Feld:	Adr.	Funk.		Par-	CRC			
Hex	01	64	00	00	03	E8	70	ВС

Der gesendete Hexadezimalwert ist 0x000003E8 = 1000. Der Parameter *Festfrequenz 2* **481** hat zwei Dezimalstellen.

Somit ist die Festfrequenz 2 = 10,00 Hz.

Beispiel 2:

Lesen des unbekannten Parameters **1600** (0x0640) im Datensatz 2 vom Frequenzumrichter mit der Adresse 1.

Anforderung: Master → Frequenzumrichter

Feld:	Adr.	Funk.	DSatz/Par-Nr.		CF	RC
Hex	01	64	26	40	5B	97

Fehlerantwort: Frequenzumrichter → Master

Feld:	Adr.	Funk.	Ausn.	CI	RC
Hex	01	E4	04	6A	C3

Der Ausnahmebedingungscode ist der Hexadezimalwert 0x04 = FEHLER SLAVE GERÄT.

8.1.4 Funktionskode 101, 32-Bit Parameter schreiben

Beispiel 1:

Schreiben des Parameters *Bemessungsfrequenz* **375** (0x0177) in Datensatz 2 des Frequenzumrichters mit der Adresse 1.

Die Bemessungsfrequenz soll auf 10,00 Hz gesetzt werden. Der Parameter *Bemessungsfrequenz* **375** hat zwei Dezimalstellen.

Somit ist der zu sendende Wert 1000 = 0x03E8.

Anforderung: Master → Frequenzumrichter

Feld:	Adr.	Funk.	DSatz/	Par-Nr.		Par-\	Wert	CRC		
Hex	01	65	21	77	00	00	03	E8	46	C5

Antwort: Frequenzumrichter → Master

Feld:	Adr.	Funk.	DSatz/	Par-Nr.		Par-\	Wert		CRC		
Hex	01	65	21	77	00 00 03			E8	46	C5	

Die Antwort ist das reflektierte Signal der Anforderungsnachricht.

Beispiel 2:

Schreiben des unzulässigen Wertes 9,00 Hz in den Parameter *Bemessungsfrequenz* **375** im Datensatz 2 des Frequenzumrichters mit der Adresse 1.

Der Parameter *Bemessungsfrequenz* **376** hat 2 Dezimalstellen. Der zu sendende Wert ist 900 = 0x0384

Anforderung: Master → Frequenzumrichter

Feld:	Adr.	Funk.	DSatz/	Par-Nr.		Par-\	Wert	CRC		
Hex	01	65	21	77	00	00	03	84	46	E8

Fehlerantwort: Frequenzumrichter → Master

Feld:	Adr.	Funk.	Ausn.	CI	RC
Hex	01	E5	04	6B	53

Der gesendete Ausnahmebedingungskode ist der hexadezimale Wert 0x04 = FEHLER SLAVE GERÄT.

8.1.5 Funktionskode 8, Diagnose

Beispiel 1a:

Löschen aller Diagnosezähler (Unterfunktion 0x0A) im Frequenzumrichter mit der Adresse 1.

Anforderung: Master → Frequenzumrichter

Feld:	Adr.	Funk.	Unterf	unktion	Da	ten	CF	RC .
Hex	01	08	00	0A	00	00	C0	09

Antwort: Frequenzumrichter → Master

Feld:	Adr.	Funk.	Unterf	unktion	Da	ten	CF	₹C
Hex	01	08	00	0A	00	00	C0	09

Die Antwort ist das reflektierte Signal der Anforderungsnachricht. Alle Zähler sind auf Null gesetzt.

Beispiel 1b:

Mit allen Zählern auf Null gesetzt, Lesen des Diagnosezählers 4 "Slave Nachrichten Zähler" (Unterfunktion 0x0E) vom Frequenzumrichter mit der Adresse 1.

Anforderung: Master → Frequenzumrichter

Feld:	Adr.	Funk.	Unterf	unktion	Da	ten	CRC		
Hex	01	08	00	OE	00	00	81	C8	

Antwort: Frequenzumrichter → Master

Feld:	Adr.	Funk.	Unterf	ınktion	Da	ten	CF	RC .
Hex	01	08	00	OE	00	01	40	08

Der Zählerwert ist 1, da dies die erste empfangene Nachricht nach dem Setzen aller Zähler auf Null ist.

Beispiel 2:

Lesen des unbekannten Diagnosezählers 8 (Unterfunktion 0x13) vom Frequenzumrichter mit der Adresse 1.

Anforderung: Master → Frequenzumrichter

Feld:	Adr.	Funk.	Unterf	unktion	Da	ten	CF	RC
Hex	01	08	00	13	00	00	11	CE

Fehlerantwort: Frequenzumrichter → Master

Feld:	Adr.	Funk.	Ausn.	CF	RC
Hex	01	88	01	87	C0

Der gesendete Ausnahmebedingungscode ist der Hexadezimalwert 0x01 = UNGÜLTIGER FUNKTIONSKODE.

8.2 Modbus ASCII-Nachrichten Beispiele

8.2.1 Funktionskode 3, 16-Bit Parameter lesen

Beispiel 1:

Lesen des Parameters *Bemessungsdrehzahl* **372** (0x0174) im Datensatz 2 vom Frequenzumrichter mit der Adresse 1.

Anforderung: Master → Frequenzumrichter

Feld	ld SoF Adr.		Fkt.	Kode	C	DSatz/Par-Nr.			R	egiste	ranza	.hl	LRC		EoF		
ASC	:	0	1	0	3	2	1	7	4	0	0	0	1	6	6	CR	LF
Hex	3A	30	31	30	33	32	31	37	34	30	30	30	31	36	36	0D	0A

Antwort: Frequenzumrichter → Master

Feld:	SoF	A	dr.	Fkt.l	Kode	Anz.l	Bytes		Par-	Wert		LF	RC	Ec	ρF
ASC	:	0	1	0	3	0	2	0	5	6	Е	8	7	CR	LF
Hex	3A	30	31	30	33	30	32	30	35	36	45	38	37	0D	0A

Der gesendete Hexadezimalwert ist 0x056E = 1390. Parameter *Bemessungsdrehzahl* **372** hat keine Nachkommastelle.

Somit ist die Bemessungsdrehzahl 1390 min⁻¹.

Beispiel 2:

Lesen des Parameters *Bemessungsdrehzahl* **372** (0x0174) im Datensatz 0 vom Frequenzumrichter mit der Adresse 1 und Registeranzahl auf 2 (unzulässiger Wert) gesetzt.

Feld:	SoF	Ad	dr.	Fkt.	Kode	ı	DSatz.	/Par-N	۱r.	Re	egiste	ranza	.hl	LR	C		EoF
ASC	:	0	1	0	3	0	1	7	4	0	0	0	2	8	5	CR	LF
Hex	3A	30	31	30	33	30	31	37	34	30	30	30	32	38	35	0D	OA

Fehlerantwort: Frequenzumrichter → Master

Feld:	SoF	A	dr.	Fkt.l	Kode	Au Ko	sn. de	LF	RC .	Ec	ρF
ASC	:	0 1		8	3	0	2	7	Α	CR	LF
Hex	3A	30 31		38	33	30	32	37	41	0D	0A

Der gesendete Ausnahmebedingungscode ist der hexadezimale Wert 0x02 = UNGÜLTIGE DATENADRESSE.

8.2.2 Funktionskode 6, 16-Bit Parameter schreiben

Beispiel 1:

Schreiben des Parameters *Mech. Bemessungsleistung* **376** (0x0178) in Datensatz 4 des Frequenzumrichters mit der Adresse 3.

Die mechanische Bemessungsleistung soll auf 1,5 kW gesetzt werden. Parameter *Mech. Bemessungsleistung* **376** hat eine Dezimalstelle.

Somit ist der zu sendende Wert 15 = 0x000F.

Anforderung: Master → Frequenzumrichter

Feld:	SoF	A	dr.	Fkt.I	Kode	D	Satz/	Par-N	r.		Para-	Wert		LF	RC		EoF
ASC	:	0	3	0	6	4	1	7	8	0	0	0	F	2	F	CR	LF
Hex	3A	30	33	30	36	34	31	37	38	30	30	30	46	32	46	0D	0A

Antwort: Frequenzumrichter → Master

Feld:	SoF	A	dr.	Fkt.I	Kode	D	Satz/	Par-N	r.		Para-	Wert		LF	RC .		EoF
ASC	:	0	3	0	6	4	1	7	8	0	0	0	F	2	F	CR	LF
Hex	3A	30	33	30	36	34	31	37	38	30	30	30	46	32	46	0D	0A

Die Antwort ist das reflektierte Signal der Anforderungsnachricht.

Beispiel 2:

Schreiben des unzulässigen Wertes 0 in den Parameter *Mech. Bemessungsleistung* **376** (0x0178) im Datensatz 2 des Frequenzumrichters mit der Adresse 3.

Anforderung: Master → Frequenzumrichter

Feld:	SoF	A	dr.	Fkt.l	Kode	D	Satz/	Par-N	lr.		Para-	Wert		LF	RC		EoF
ASC	:	0	3	0	6	2	1	7	8	0	0	0	0	5	Е	CR	LF
Hex	3A	30	33	30	36	32	31	37	38	30	30	30	30	35	45	0D	0A

Fehlerantwort: Frequenzumrichter → Master

Feld:	SoF	Ad	dr.	Fkt.l	Kode	Au Ko		LF	RC	Ec	ρF
ASC	:	0	0 3		6	0	4	7	3	CR	LF
Hex	3A	30	30 33		36	30	34	37	33	0D	0A

Der gesendete Ausnahmebedingungskode ist der hexadezimale Wert 0x04 = FEHLER SLAVE GERÄT.

8.2.3 Funktionskode 100, 32-Bit Parameter lesen

Beispiel 1:

Lesen des Parameters *Festfrequenz 2* **481** im Datensatz 0 vom Frequenzumrichter mit der Adresse 1.

Anforderung: Master → Frequenzumrichter

Feld:	SoF	A	dr.	Fkt.I	Kode	D	Satz/	Par-N	r.	LF	C	Ec	ρF
ASC	:	0	0 1		4	0	1	Е	1	В	9	CR	LF
Hex	3A	30	31	36	34	30	31	45	31	42	39	0D	0A

Antwort: Frequenzumrichter → Master

Feld:	SoF	Ad	dr.	Fkt.l	Kode				Para-V	Vert				LF	RC		EoF
ASC	:	0	1	6	4	0	0	0	0	0	3	Е	8	В	0	CR	LF
Hex	3A	30	31	36	34	30	30	30	30	30	33	45	38	42	30	0D	0A

Der gesendete Hexadezimalwert ist 0x000003E8 = 1000. Der Parameter *Festfrequenz 2* **481** hat zwei Dezimalstellen.

Somit ist die Festfrequenz 2 = 10,00 Hz.

Beispiel 2:

Lesen des unbekannten Parameters **1600** (0x0640) im Datensatz 2 vom Frequenzumrichter mit der Adresse 1.

Anforderung: Master → Frequenzumrichter

Feld:	SoF	A	dr.	Fkt.I	Kode		Satz/	Par-N	r.	LF	RC .	Ec	ρF
ASC	:	0	1	6	4	2	6	4	0	3	5	CR	LF
Hex	3A	30	31	36	34	32	36	34	30	33	35	0D	0A

Fehlerantwort: Frequenzumrichter → Master

Feld:	SoF	A	dr.	Fkt.	Kode		ısn. ode	LF	RC	Ec	ρF
ASC	:	0	0 1		4	0	2	1	9	CR	LF
Hex	3A	30	31	45	34	30	34	31	37	0D	0A

Der Ausnahmebedingungscode ist der Hexadezimalwert 0x04 = FEHLER SLAVE GERÄT.

8.2.4 Funktionskode 101, 32-Bit Parameter schreiben

Beispiel 1:

Schreiben des Parameters *Bemessungsfrequenz* **375** (0x0177) in Datensatz 2 des Frequenzumrichters mit der Adresse 1.0

Die Bemessungsfrequenz soll auf 10,00 Hz gesetzt werden. Der Parameter *Bemessungsfrequenz* **375** hat zwei Dezimalstellen.

Somit ist der zu sendende Wert 1000 = 0x03E8.

Anforderung: Master → Frequenzumrichter

Feld	SoF	Ac	lr.	Fkt	.Kd	DS	atz/	Par-I	Nr.			F	ara-	Wer	t			LF	RC		EoF
ASC	:	0	1	6	5	2	1	7	7	0	0	0	0	0	3	Е	8	1	7	CR	LF
Hex	3A	30	31	36	35	32	31	37	37	30	30	30	30	30	33	45	38	31	37	0D	0A

Antwort: Frequenzumrichter → Master

Feld	SoF	Ad	dr.	Fkt	.Kd	DS	atz/	Par-I	Nr.			F	ara-	Wer	t			LF	ιc		EoF
ASC	:	0	1	6	5	2	1	7	7	0	0	0	0	0	3	Е	8	1	7	CR	LF
Hex	3A	30	31	36	35	32	31	37	37	30	30	30	30	30	33	45	38	31	37	0D	0A

Die Antwort ist das reflektierte Signal der Anforderungsnachricht.

Beispiel 2:

Schreiben des unzulässigen Wertes 9,00 Hz in den Parameter *Bemessungsfrequenz* **375** im Datensatz 2 des Frequenzumrichters mit der Adresse 1.

Der Parameter *Bemessungsfrequenz* **376** hat 2 Dezimalstellen. Der zu sendende Wert ist 900 = 0x0384

Anforderung: Master → Frequenzumrichter

Feld	SoF	Ad	ir.	Fkt	.Kd	DS	atz/	Par-I	۷r.			F	ara-	Wer	t			LF	≀C		EoF
ASC	:	0	1	6	5	2	1	7	7	0	0	0	0	0	3	8	4	7	В	CR	LF
Hex	3A	30	31	36	35	32	31	37	37	30	30	30	30	30	33	38	34	37	42	0D	0A

Fehlerantwort: Frequenzumrichter → Master

Feld	SoF	Ad	dr.	Fkt.I	Kode	Au Ko		LF	RC	Ed	ρF
ASC	:	0	1	E	5	0	4	1	6	CR	LF
Hex	3A	30	31	45	35	30	34	31	36	0D	0A

Der gesendete Ausnahmebedingungskode ist der hexadezimale Wert 0x04 = FEHLER SLAVE GERÄT.

8.2.5 Funktionskode 8, Diagnose

Beispiel 1a:

Löschen aller Diagnosezähler (Unterfunktion 0x0A) im Frequenzumrichter mit der Adresse 1.

Anforderung: Master → Frequenzumrichter

Feld:	SoF	Ad	dr.	Fkt.I	Kode	ι	Interf	unktio	n		Da	ten		LF	RC		EoF
ASC	:	0	1	0	8	0	0	0	Α	0	0	0	0	Е	D	CR	LF
Hex	3A	30	31	30	38	30	30	30	41	30	30	30	30	45	44	0D	0A

Antwort: Frequenzumrichter → Master

Feld:	SoF	Ad	dr.	Fkt.k	Kode	D:	Satz/	Para-N	lr.	Re	egiste	ranza	hl	LF	RC		EoF
ASC	:	0	1	0	8	0	0	0	Α	0	0	0	0	Е	D	CR	LF
Hex	3A	30	31	30	38	30	30	30	41	30	30	30	30	45	44	0D	0A

Die Antwort ist das reflektierte Signal der Anforderungsnachricht. Alle Zähler sind auf Null gesetzt.

Beispiel 1b:

Mit allen Zählern auf Null gesetzt, Lesen des Diagnosezählers 4 "Slave Nachrichten Zähler" (Unterfunktion 0x0E) vom Frequenzumrichter mit der Adresse 1.

Feld:	SoF	Ad	dr.	Fkt.l	Kode	J	Interf	unktio	n		Da	ten		LF	C		EoF
ASC	:	0	1	0	8	0	0	0	Е	0	0	0	0	Е	9	CR	LF
Hex	3A	30	31	30	38	30	30	30	45	30	30	30	30	45	39	0D	0A

Antwort: Frequenzumrichter → Master

Feld:	SoF	Ad	dr.	Fkt.l	Kode	J	Interf	unktio	n		Da	ten		LF	RC		EoF
ASC	:	0	1	0	8	0	0	0	Е	0	0	0	1	Е	8	CR	LF
Hex	3A	30	31	30	38	30	30	30	45	30	30	30	31	45	38	0D	0A

Beispiel 2:

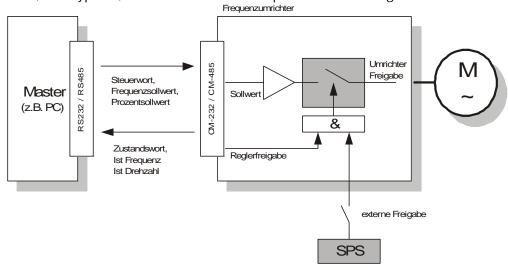
Lesen des unbekannten Diagnosezählers 8 (Unterfunktion 0x13) vom Frequenzumrichter mit der Adresse 1.

Anforderung: Master → Frequenzumrichter

Feld:	SoF	Ad	dr.	Fkt.l	Kode	L	Interf	ınktio	n		Da	ten		LF	RC		EoF
ASC	:	0	1	0	8	0	0	1	3	0	0	0	0	Е	4	CR	LF
Hex	3A	30	31	30	38	30	30	31	33	30	30	30	30	45	34	0D	0A

Fehlerantwort: Frequenzumrichter → Master

Feld:	SoF	A	dr.	Fkt.I	Kode	Au Ko	sn. de	LF	RC	Ec	ρF
ASC	:	0	1	8	8	0	1	7	6	CR	LF
Hex	3A	30	31	38	38	30	31	37	36	0D	0A


Der gesendete Ausnahmebedingungscode ist der Hexadezimalwert 0x01 = UNGÜLTIGER FUNKTIONSKODE.

9 Steuerung/Sollwert

Der Frequenzumrichter kann vollständig über die serielle Schnittstelle gesteuert werden. Dazu existieren folgende Parameter und Istwerte:

	Parameter			Einst	ellung	
Nr.	Name/Bedeutung		Min.	Max.	Werkseinst.	Тур
410	Steuerwort		0x0000	0xFFFF	1	uInt
411	Zustandswort		0x0000	0xFFFF	-	uInt
484	Frequenzsollwert RAM	[Hz]	-999,99	999,99	0,00	Long
524	Prozentsollwert RAM	[%]	-300,00	300,00	0,00	Long

Mit dem *Steuerwort* **410** (Datentyp uInt) werden Steuerkommandos an den Frequenzumrichter gesendet und mit dem *Frequenzsollwert RAM* **484** (Datentyp Long [Hz]), bzw. *Prozentsollwert RAM* **524** (Datentyp Long [%]) der Liniensollwert. Über das *Zustandswort* **411** (Datentyp uInt) wird der Zustand des Frequenzumrichters ausgelesen.

Hinweis: Steuerwort 410, Frequenzsollwert RAM 484 und Prozentsollwert RAM 524 werden im RAM des Frequenzumrichters gespeichert. Diese werden prinzipiell über den Datensatz 0 angesprochen.

Hinweis: Externe Freigabe

- ☐ Beim KFU 2-/4- Frequenzumrichter wird die externe Freigabe durch Beschaltung des Eingangs S1IND erreicht.
- □ Dieser Digitaleingang hat die höchste Priorität und ist zu verdrahten.

Der Frequenzumrichter kann über drei verschiedene Betriebsarten gesteuert werden. Diese Betriebsarten werden über den Parameter *Local/Remote* **412** eingestellt.

	Local/Remote 412	Funktion
0 -	Steuerung über Kontakte	Die Befehle Start und Stopp, sowie die Vorgabe der Drehrichtung erfolgen über Digitalsignale.
1 -	Steuerung über Steuerwort der Statemachine	Die Befehle Start und Stopp, sowie die Vorgabe der Drehrichtung erfolgen über die DRIVECOM Statemachine ¹⁾ der Kommunikationsschnittstelle.
2 -	Steuerung über Remote- Kontakte	Die Befehle Start und Stopp, sowie die Vorgabe der Drehrichtung erfolgen mit Hilfe von virtuellen Digitalsignalen durch das Kommunikationsprotokoll.

Hinweis:

¹⁾ Statemachine ist ein genormtes Softwaremodul innerhalb der Steuerung des Frequenzumrichters. Die Statemachine bildet vorgegebene Betriebszustände und die Steuerung innerhalb des Frequenzumrichters ab.

Hinweis:

Für den Betrieb über die serielle Schnittstelle sind die Einstellwerte 0, 1 und 2 relevant. Weitere mögliche Betriebsarten *Local/Remote* **412** sind in der Betriebsanleitung zum Frequenzumrichter beschrieben. Diese beziehen sich auf die Steuerung über die Bedieneinheit KP500 und die Steuerung über Digitalsignale.

□ Der Parameter *Local/Remote* **412** ist datensatzumschaltbar, d. h. per Datensatzanwahl kann zwischen den unterschiedlichen Betriebsarten umgeschaltet werden.

Es ist beispielsweise möglich, den Frequenzumrichter über die serielle Schnittstelle zu steuern und bei Ausfall der Steuerung einen lokalen Notbetrieb zu aktivieren. Diese Umschaltung ist über das Zustandswort im Bit "Remote" sichtbar.

Die Datensatzumschaltung kann über Steuerkontakte an den Digitaleingängen des Frequenzumrichters erfolgen oder über den Bus. Für die Datensatzumschaltung über den Bus wird der Parameter *Datensatzanwahl* **414** genutzt.

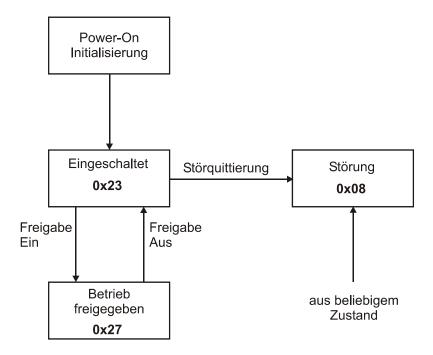
	Parameter		Einste	llung
Nr.	Name/Bedeutung	Min.	Max.	Werkseinst.
414	Datensatzanwahl	0	4	0

Mit der werkseitigen Einstellung *Datensatzanwahl* **414** = 0 erfolgt die Datensatzumschaltung über die Digitaleingänge.

Ist *Datensatzanwahl* **414** auf 1, 2, 3 oder 4 gesetzt, dann wird über den Bus der damit angewählte Datensatz aktiviert. Gleichzeitig ist die Datensatzumschaltung über die Digitaleingänge deaktiviert.

Über den Parameter *aktiver Datensatz* **249** kann der aktuell angewählte Datensatz ausgelesen werden. Dies ist unabhängig davon, ob die Datensatzumschaltung über die Digitaleingänge oder per *Datensatzanwahl* **414** erfolgte.

9.1 Steuerung


9.1.1 Steuerung über Kontakte

In der Betriebsart "Steuerung über Kontakte" (*Local/Remote* **412** = 0) wird der Frequenzumrichter über die Digitaleingänge S1IND ... S6IND, den Multifunktionseingang MFI1D so wie optional über die zusätzlichen Eingänge EM-S1IND ... EM-S3IND (Erweiterungsmodule) angesteuert.

Die Bedeutung dieser Eingänge ist in der Betriebsanleitung zum Frequenzumrichter und zu den Erweiterungsmodulen beschrieben.

Hinweis: Wird der Frequenzumrichter über die Digitaleingänge S1IND ... S6IND angesteuert, dann entfällt in dieser Betriebsart die Ansteuerung über das *Steuerwort* **410**.

Ablauf in der Statemachine:

Die Zahlenangaben bei den einzelnen Betriebszuständen (z. B. **0x23**) geben die entsprechende Rückmeldung (z. B. Eingeschaltet) über das Zustandswort (Bit 0 ... 6) an.

Der Parameter Zustandswort 411 hat eine Länge von 16 Bit. Die gesetzten Bits haben folgende Bedeutung:

Zustandswort 411							
Bit-Nr.	Funktion						
0	Einschaltbereit						
1	Eingeschaltet						
2	Betrieb - Freigegeben						
3	Störung						
4	Spannung - Gesperrt						
5	Schnellhalt						
6	Einschaltsperre						
7	Warnung						
8	_						
9	Remote						
10	Sollwert erreicht						
11	Grenzwert erreicht						
12	_						
13	-						
14							
15	Warnung 2						

Das Zustandswort spiegelt den Betriebszustand wieder.

Zustandswort	HEX ¹⁾	Bit 6	Bit 5	Bit 3	Bit 2	Bit 1	Bit O
Eingeschaltet	0x23	0	1	0	0	1	1
Betrieb freigegeben	0x27	0	1	0	1	1	1
Störung	0x08	0	X ²⁾	1	0	0	0

¹⁾ ohne Berücksichtigung der Bits 7...15!

Eine auftretende Störung führt zum Umschalten auf den Zustand Störung.

Hinweis: Eine Störungsquittierung ist erst 15 Sekunden nach dem Auftreten der Störung möglich, da geräteintern eine Sperrzeit aktiv ist.

Ist eine Störung aufgetreten, kann die Störungsursache über den Parameter *aktueller Fehler* **260** ausgelesen werden.

²⁾ "X" bedeutet beliebiger Wert ("0" oder "1")

Zustandswort Bit 7 bis Bit 15:

Bit 7, "Warnbit"

Das **Warnbit** kann zu beliebigen Zeitpunkten kommen. Es zeigt eine geräteinterne Warnmeldung an und führt, abhängig von der Ursache, zur Abschaltung des Frequenzumrichters. Die Auswertung, welche Warnung anliegt, erfolgt durch das Auslesen des Warnstatus mit dem Parameter *Warnungen* **270**.

Bit 9, "Remote"

Das **Remotebit** ist bei der Steuerung über Kontakte stets auf den Wert "O" gesetzt.

Bit 10, "Sollwert erreicht"

Das Bit "Sollwert erreicht" wird gesetzt, wenn der vorgegebene Sollwert erreicht wurde. Im Sonderfall Netzausfallstützung wird das Bit auch dann gesetzt, wenn die Netzausfallstützung die Frequenz O Hz erreicht hat (siehe Betriebsanleitung zum Frequenzumrichter).

Für "Sollwert erreicht" gilt eine Hysterese (Toleranzbereich), die über den Parameter *max. Regelabweichung* **549** eingestellt werden kann (siehe Betriebsanleitung zum Frequenzumrichter).

Bit 11, "Grenzwert aktiv"

Das Bit **Grenzwert aktiv** zeigt an, dass eine interne Begrenzung aktiv ist. Dies kann beispielsweise die Strombegrenzung, die Drehmomentbegrenzung oder die Überspannungsregelung sein. Alle Funktionen führen dazu, dass der Sollwert verlassen oder nicht erreicht wird.

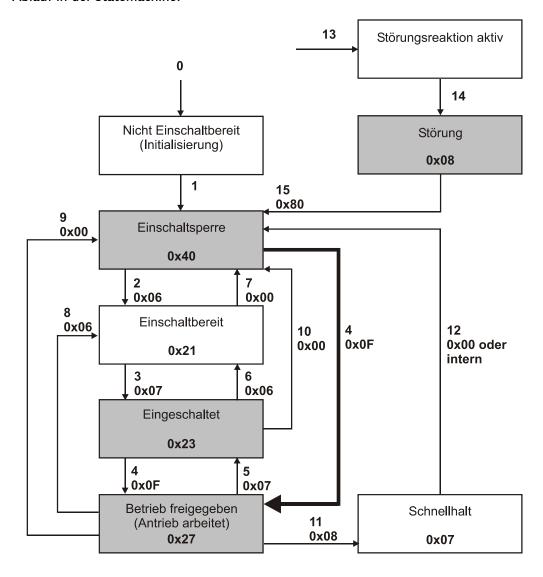
Bit 15, "Warnung 2"

Das Bit "Warnung 2" erweitert das Bit 7 "Warnbit" um folgende Information:

Bit 15 meldet einen kritischen Betriebszustand, der innerhalb kurzer Zeit zu einer Störungsabschaltung des Frequenzumrichters führt. Dieses Bit wird gesetzt, wenn eine zeitverzögerte Warnung für Motor-Temperatur, Kühlkörper-/Innenraum-Temperatur, Ixt-Überwachung oder Netzphasenausfall anliegt.

Ist Bit 15 gesetzt, so ist auch Bit 7 gesetzt.

9.1.2 Steuerung über Steuerwort der Statemachine


In dieser Betriebsart (*Local/Remote* **412** = 1) wird der Frequenzumrichter über das **Steuerwort** der Statemachine angesteuert. Im Diagramm sind die möglichen Zustände und Übergänge angegeben.

Die Zustände sind durch Rechtecke und die Übergänge durch Pfeile gekennzeichnet.

Die Zahlen an den Pfeilen kennzeichnen die Übergänge zwischen den Zuständen. Die Kodes Oxnn an den Übergängen sind das jeweils notwendige Steuerwort (Bit 0...7).

Die in den Zuständen angegebenen Codes 0xnn geben den Inhalt des Zustandswortes (Bit 0 ... Bit 7) an.

Ablauf in der Statemachine:

Nach Netz-Ein (Reset) befindet sich der Frequenzumrichter im Zustand "Einschaltsperre" (0x40).

Mit den Übergängen 4 und 5 wird danach zwischen "Betrieb freigegeben" (0x27, Endstufen freigegeben, Antrieb arbeitet) und "Eingeschaltet" (0x23, Endstufen gesperrt) gewechselt.

Die Freigabe (Übergang 4) ist nur möglich, wenn die Reglerfreigabe und der entsprechende Steuerbefehl über die externe Freigabe UND (S2IND ODER S3IND) anliegen. Diese können fest verdrahtet bzw. über die Konfiguration der Digitaleingänge fest auf die logischen Zustände "Ein" oder "Aus" verknüpft sein. Mit der Wegnahme des Steuersignals an der externen Freigabe können die Endstufen jederzeit gesperrt werden. Der Antrieb läuft dann frei aus. Es erfolgt dabei ein Übergang nach "Eingeschaltet" (0x23, Endstufen gesperrt).

Der Übergang 5 ist in seinem Verhalten über den Parameter Übergang 5 392 einstellbar. Hier kann freier Auslauf, Stillsetzen über Rampe (reversierbar) oder Gleichstrombremsung (abhängig von der gewählten Konfiguration, siehe Kapitel 9.1.2.2) genutzt werden.

Der Parameter *Steuerwort* **410** hat eine Länge von 16 Bit. Die gesetzten Bits haben folgende Bedeutung:

Steuerwort 410						
Bit-Nr.	Funktion / Name					
0	Einschalten					
1	Spannung - Sperren					
2	Schnellhalt					
3	Betrieb - Freigegeben					
4	-					
5	-					
6	-					
7	Reset-Störung					
8	-					
9	-					
10	-					
11	-					
12	-					
13	-					
14	-					
15	_					

Steuerbefehle

Die Gerätesteuerbefehle werden durch folgende Bitkombinationen im Parameter Steuerwort 410 ausgelöst:

Steuerbefehle											
		Steuerwort									
Befehl	HEX	HEX Bit 7 Bit 3 Bit 2 Bit 1 Bit 0 Übergang									
Stillsetzen	0x06	X ¹⁾	×	1	1	0	2, 6, 8				
Einschalten	0x07	Χ	×	1	1	1	3				
Spannung - sperren	0x00	Χ	×	Х	0	Х	7, 9, 10				
Schnellhalt	0x02	Χ	×	0	1	Х	11				
Betrieb - sperren	0x07	X	0	1	1	1	5				
Betrieb - freigeben	0x0F	Х	1	1	1	1	4				
Reset Störung	0x80	0 ⇒ 1	Х	Х	Х	Х	15				

^{1) &}quot;X" bedeutet beliebiger Wert ("0" oder "1")

Um die Bedienung des Gerätes einfacher zu gestalten, ist in Erweiterung zu der unter DRIVECOM definierten Statemachine eine Vereinfachung implementiert. Es ist ein zusätzlicher Übergang 4 (0x0F) von "Einschaltsperre" (0x040) nach "Betrieb freigegeben" (0x27) vorhanden. Übergang 4 ist im Ablaufschema durch eine verstärkt gezeichnete Pfeillinie gekennzeichnet.

Die schattierten Bereiche zeigen die für die vereinfachte Statemachine zutreffenden Befehle.

Eine auftretende Störung führt zum Umschalten auf den Zustand Störung.

Hinweis: Wird der Befehl "Reset Störung" ausgeführt, erfolgt der Übergang 15 auf eine positive Flanke des Bits 7!

> Eine Störungsquittierung ist erst nach 15 Sekunden nach dem Auftreten der Störung möglich, da geräteintern eine Sperrzeit aktiv ist.

Der Parameter Zustandswort 411 hat eine Länge von 16 Bit. Die gesetzten Bits haben folgende Bedeutung:

Zustandswort 411							
Bit-Nr.	Funktion						
0	Einschaltbereit						
1	Eingeschaltet						
2	Betrieb - Freigegeben						
3	Störung						
4	Spannung - Gesperrt						
5	Schnellhalt						
6	Einschaltsperre						
7	Warnung						
8	_						
9	Remote						
10	Sollwert erreicht						
11	Grenzwert erreicht						
12	_						
13	_						
14							
15	Warnung 2						

Das Zustandswort spiegelt den Betriebszustand wieder.

Zustandswort	HEX ¹⁾	Bit 6	Bit 5	Bit 3	Bit 2	Bit 1	Bit O
Nicht einschaltbereit	0x00	0	X ²⁾	0	0	0	0
Einschaltsperre	0x40	1	Х	0	0	0	0
Einschaltbereit	0x21	0	1	0	0	0	1
Schnellhalt	0x07	0	0	0	1	1	1
Eingeschaltet	0x23	0	1	0	0	1	1
Betrieb freigegeben	0x27	0	1	0	1	1	1
Störung	0x08	0	Х	1	0	0	0
Störungsreaktion aktiv	0x0F	0	Х	1	1	1	1

¹⁾ ohne Berücksichtigung der Bits 7...15!

Die schattierten Bereiche zeigen die für die vereinfachte Statemachine zutreffenden Befehle.

²⁾ "X" bedeutet beliebiger Wert ("0" oder "1")

Zustandswort Bit 7 bis Bit 15:

Bit 7, "Warnbit"

Das **Warnbit** kann zu beliebigen Zeitpunkten eine geräteinterne Warnmeldung anzeigen und führt, abhängig von der Ursache, zur Abschaltung des Frequenzumrichters.

Die Auswertung, welche Warnung anliegt, erfolgt durch das Auslesen des Warnstatus mit dem Parameter *Warnungen* **270**.

Bit 9, "Remote"

Das **Remotebit** wird gesetzt, wenn die Betriebsart "Steuerung über Steuerwort der Statemachine" (*Local/Remote* **412** = 1) eingestellt ist, sowie die Reglerfreigabe über die externe Freigabe und der Startbefehl an den Digitaleingängen S2IND oder S3IND anliegt.

Hinweis: Nur mit gesetzter externer Freigabe und mit gesetztem Remotebit

Local/Remote **412** = 1 kann der Frequenzumrichter über das Steuerwort angesteuert werden!

Bit 10, "Sollwert erreicht"

Das Bit "Sollwert erreicht" wird gesetzt, wenn der vorgegebene Sollwert erreicht wurde. Im Sonderfall Netzausfallstützung wird das Bit auch dann gesetzt, wenn die Netzausfallstützung die Frequenz O Hz erreicht hat (siehe Betriebsanleitung zum Frequenzumrichter).

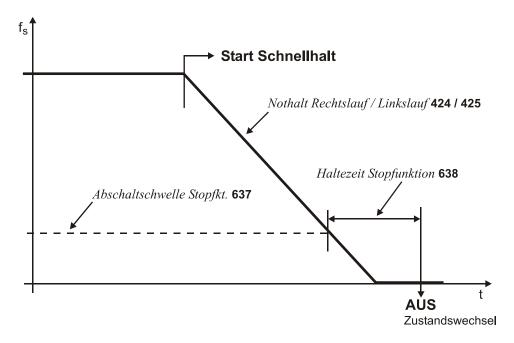
Für "Sollwert erreicht" gilt eine Hysterese (Toleranzbereich), die über den Parameter *max. Regelabweichung* **549** eingestellt werden kann (siehe Betriebsanleitung zum Frequenzumrichter).

Bit 11, "Grenzwert aktiv"

Das Bit **Grenzwert aktiv** zeigt an, dass eine interne Begrenzung aktiv ist. Dies kann beispielsweise die Strombegrenzung, die Drehmomentbegrenzung oder die Überspannungsregelung sein. Alle Funktionen führen dazu, dass der Sollwert verlassen oder nicht erreicht wird.

Bit 15, "Warnung 2"

Das Bit "Warnung 2" erweitert das Bit 7 "Warnbit" um folgende Information:


Bit 15 meldet einen kritischen Betriebszustand, der innerhalb kurzer Zeit zu einer Störungsabschaltung des Frequenzumrichters führt. Dieses Bit wird gesetzt, wenn eine zeitverzögerte Warnung für Motor-Temperatur, Kühlkörper-/Innenraum-Temperatur, Ixt-Überwachung oder Netzphasenausfall anliegt.

Ist Bit 15 gesetzt, so ist auch Bit 7 gesetzt.

9.1.2.1 Verhalten bei Schnellhalt

Hierbei sind die Parameter *Abschaltschwelle Stopfkt*. **637** (Prozentwert von Parameter *maximale Frequenz* **419**) und *Haltezeit Stopfunktion* **638** (Haltezeit nach Unterschreiten der Abschaltschwelle) relevant.

Beim Schnellhalt wird der Antrieb über die Notstopp-Rampen (*Nothalt Rechtslauf* **424** oder *Nothalt Linkslauf* **425**) stillgesetzt.

Ist während der Abschaltzeit die Frequenz/Drehzahl Null erreicht, wird der Antrieb weiterhin bestromt, bis die Abschaltzeit abgelaufen ist. Mit dieser Maßnahme wird sichergestellt, dass beim Zustandswechsel der Antrieb steht.

9.1.2.2 Verhalten bei Übergang 5 (von "Betrieb freigegeben" nach "Eingeschaltet")

Das Verhalten im Übergang "5" von "Betrieb freigegeben" nach "Eingeschaltet" ist über den Parameter *Uebergang* 5392 parametrierbar.

Uebergang 5	Funktion
0 – freier Auslauf	Sofortiger Übergang von "Betrieb freigegeben" nach "Eingeschaltet", freier Auslauf des Antriebs.
1 – Gleichstrombremse	Aktivierung Gleichstrombremse, mit dem Ende der Gleichstrombremsung erfolgt der Wechsel von "Betrieb freigegeben" nach "Eingeschaltet".
2 – Rampe	Übergang mit normaler Rampe, nach Erreichen des Stillstands erfolgt der Wechsel von "Betrieb freigegeben" nach "Eingeschaltet".

Hinweis:

Die Einstellung 1 "Gleichstrombremse" ist nur bei Anwendungen mit geberloser Steuerung (z. B. Konfiguration 110) möglich. Andere Konfigurationen unterstützen diese Betriebsart nicht.

Wird der Frequenzumrichter mit einer Konfiguration betrieben, welche die Betriebsart Gleichstrombremse nicht unterstützt (z. B. Konfiguration 210, Feldorientierte Regelung), kann der Wert "1" nicht eingestellt werden.

Die Betriebsart wird in diesem Fall auch nicht in den Auswahlmenüs der Bedieneinheit KP500 sowie der Bediensoftware VPlus angeboten.

Der Defaultwert für *Uebergang* 5392 ist standardmäßig die Betriebsart 2 (Rampe). Für Konfigurationen mit Drehmomentregelung ist der Defaultwert gleich 0 (freier Auslauf).

Bei einem Umschalten der Konfiguration wird gegebenenfalls der Einstellwert für Übergang 5 392 geändert.

Ist *Uebergang* 5 392 mit dem Wert 1 "Gleichstrombremse" angestoßen worden, wird erst nach dem Abschluss des Übergangsvorgangs ein neues Steuerwort akzeptiert. Der Zustandswechsel von "Betrieb freigegeben" nach "Eingeschaltet" erfolgt nach Ablauf der für die Gleichstrombremse parametrierten *Bremszeit* 632.

Ist der Parameter *Uebergang* 5392 = 2 "Rampe" eingestellt, kann während des Herunterfahrens des Antriebs das Steuerwort wieder auf 0x0F gesetzt werden. Damit läuft der Antrieb wieder auf seinen eingestellten Sollwert hoch und verbleibt im Zustand "Betrieb freigegeben".

Der Zustandswechsel von "Betrieb freigegeben" nach "Eingeschaltet" erfolgt nach Unterschreiten der eingestellten Abschaltschwelle und nach Ablauf der eingestellten Haltezeit (äquivalent zum Verhalten bei Schnellhalt). Hierbei sind die Parameter

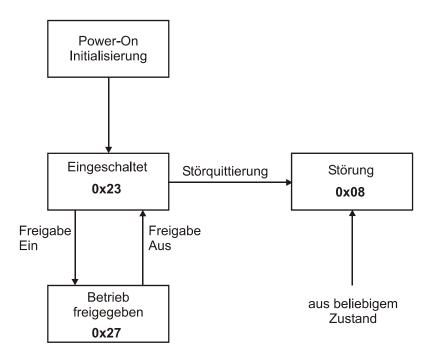
Abschaltschwelle Stopfkt. 637 (Prozentwert von Parameter maximale Frequenz 419) und Haltezeit Stopfunktion 638 (Haltezeit nach Unterschreiten der Abschaltschwelle) relevant.

9.1.3 Steuerung über Remotekontakte

In der Betriebsart Steuerung über Remotekontakte (*Local/Remote* **412** = 2) wird der Frequenzumrichter über den Parameter *Steuerwort* **410** kontrolliert.

Die Digitaleingänge S1IND ... S6IND und der Multifunktionseingang MFI1D des Frequenzumrichters sowie die Eingänge EM-S1IND ... EM-S3IND der optionalen Erweiterungsmodule werden durch Bit 0 ... Bit 9 des Parameters *Steuerwort* **410** emuliert.

Der Frequenzumrichter verhält sich bei der Benutzung der Remote-Kontakte identisch zu der Ansteuerung über die Digitaleingänge. Die Funktionalität dieser Eingänge und deren Parametrierung ist der Betriebsanleitung zum Frequenzumrichter zu entnehmen.


Hinweis: Die Freigabe ist nur möglich, wenn

☐ Bit O des Steuerwortes auf "1" gesetzt ist **und**

die Freigabe über Hardware mit logisch "1" beschaltet ist.

Eine Reglerfreigabe allein per Software ist nicht möglich!

Ablauf in der Statemachine:

Die Zahlenangaben bei den einzelnen Betriebszuständen (z. B. **0x23**) geben die entsprechende Rückmeldung über das Zustandswort (Bit 0 ... 6) an.

Hinweis:

Eingänge, die über das Steuerwort gesetzt sind, können über die Bedieneinheit KP500 oder über die Bediensoftware VPlus mit Hilfe des Parameters *Digitaleingänge* **250** beobachtet werden.

Die Digitaleingänge werden dabei nur dann als gesetzt angezeigt, wenn die Freigabe über Hardware anliegt **und** im Steuerwort das Bit 0 auf den Wert "1" gesetzt ist

Hinweis:

Wird die Datensatzumschaltung benutzt, ist darauf zu achten, dass der Parameter *Local/Remote* **412** in allen zugeordneten Datensätzen auf die Betriebsart "2" (Steuerung über Remotekontakte) gesetzt ist.

Hinweis:

Bei der Verwendung von Remote-Kontakten werden die Signalquellen* virtuell vom *Steuerwort* **410** übernommen. Signale an den Hardware-Klemmen werden über die Standard-Betriebsarten (z. B. 71 für S2IND) nicht ausgewertet.

Um Signale an den Hardware-Klemmen auswerten zu können, stehen spezielle Betriebsarten zur Verfügung, die mit dem Zusatz "(Hardware)" gekennzeichnet sind und von 526 bis 546 nummeriert zur Verfügung stehen.

Ausnahme: Die Freigabe muss immer über den Hardware-Eingang S1IND (X210A.3) und das Bit 0 "S1IND" des Steuerwortes erfolgen. Eine Reglerfreigabe allein per Software ist nicht möglich.

* Signalquellen sind: S1IND ... S6IND, MFI1D, EM-S1IND ... EM-S3IND

Belegung von Parameter Steuerwort 410 und Istwert Zustandswort 411:

Steuerwort 410						
Bit-Nr.	Name					
0	S1IND					
1	S2IND					
2	S3IND					
3	S4IND					
4	S5IND					
5	S6IND					
6	MFI1D					
7	EM-S1IND					
8	EM-S2IND					
9	EM-S3IND					
10	_					
11	_					
12	_					
13	_					
14	_					
15	_					

Zustandswort 411						
Bit-Nr.	Name					
0	Einschaltbereit					
1	Eingeschaltet					
2	Betrieb - Freigegeben					
3	Störung					
4	Spannung – Gesperrt*					
5	Schnellhalt					
6	Einschaltsperre					
7	Warnung					
8	-					
9	Remote					
10	Sollwert erreicht					
11	Grenzwert erreicht					
12	_					
13	_					
14						
15	Warnung 2					

^{*} Dieses Bit steht bei den Geräten des Typs KFU 2-/4- auf logisch 0.

Das Zustandswort spiegelt den Betriebszustand wieder.

Zustandswort	HEX ¹)	Bit 6	Bit 5	Bit 3	Bit 2	Bit 1	Bit O
Eingeschaltet	0x23	0	1	0	0	1	1
Betrieb freigegeben	0x27	0	1	0	1	1	1
Störung	0x08	0	X ²⁾	1	0	0	0

¹⁾ ohne Berücksichtigung der Bits 7...15!

Eine auftretende Störung führt zum Umschalten auf den Zustand Störung.

Hinweis: Eine Störungsquittierung ist erst 15 Sekunden nach dem Auftreten der Störung möglich, da geräteintern eine Sperrzeit aktiv ist.

Ist eine Störung aufgetreten, kann die Störungsursache über den Parameter *aktueller Fehler* **260** ausgelesen werden.

Zustandswort Bit 7 bis Bit 15:

Bit 7, "Warnbit"

Das **Warnbit** kann zu beliebigen Zeitpunkten eine geräteinterne Warnmeldung anzeigen und führt, abhängig von der Ursache, zur Abschaltung des Frequenzumrichters.

Die Auswertung, welche Warnung anliegt, erfolgt durch das Auslesen des Warnstatus mit dem Parameter *Warnungen* **270**.

Bit 9, "Remote"

Das "Remotebit" wird gesetzt, wenn die "Betriebsart Steuerung über Remote-Kontakte" eingestellt ist (*Local/Remote* 412 = 2) und die externe Freigabe anliegt. Nur dann kann der Frequenzumrichter über das Steuerwort angesteuert werden.

Bit 10, "Sollwert erreicht"

Das Bit "Sollwert erreicht" wird gesetzt, wenn der vorgegebene Sollwert erreicht wurde. Im Sonderfall Netzausfallstützung wird das Bit auch dann gesetzt, wenn die Netzausfallstützung die Frequenz O Hz erreicht hat (siehe Betriebsanleitung zum Frequenzumrichter).

Für "Sollwert erreicht" gilt eine Hysterese (Toleranzbereich), die über den Parameter *max. Regelabweichung* **549** eingestellt werden kann (siehe Betriebsanleitung zum Frequenzumrichter).

Bit 11, "Grenzwert aktiv"

Das Bit **Grenzwert aktiv** zeigt an, dass eine interne Begrenzung aktiv ist. Dies kann beispielsweise die Strombegrenzung, die Drehmomentbegrenzung oder die Überspannungsregelung sein. Alle Funktionen führen dazu, dass der Sollwert verlassen oder nicht erreicht wird.

Bit 15, "Warnung 2"

Das Bit "Warnung 2" erweitert das Bit 7 "Warnbit" um folgende Information:

Bit 15 meldet einen kritischen Betriebszustand, der innerhalb kurzer Zeit zu einer Störungsabschaltung des Frequenzumrichters führt. Dieses Bit wird gesetzt, wenn eine zeitverzögerte Warnung für Motor-Temperatur, Kühlkörper-/Innenraum-Temperatur, Ixt-Überwachung oder Netzphasenausfall anliegt.

Ist Bit 15 gesetzt, so ist auch Bit 7 gesetzt.

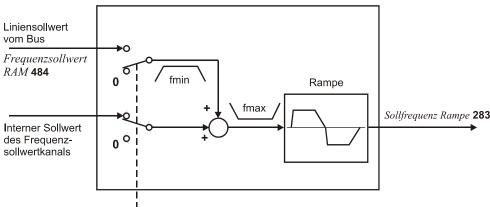
^{2) &}quot;X" bedeutet beliebiger Wert ("0" oder "1")

9.2 Sollwert

9.2.1 Frequenzsollwert

Zur Bildung des Frequenzsollwertes stehen folgende Signalquellen zur Verfügung:

- ☐ Externer Sollwert als Liniensollwert vom Bus
- □ Interner Sollwert vom Frequenzsollwertkanal


Der Liniensollwert mit der Parameterbezeichnung *Frequenzsollwert RAM* **484** wird über den Bus an den Frequenzumrichter gesendet.

Der interne Sollwert gelangt über den Frequenzsollwertkanal zum Frequenzumrichter. Der Frequenzsollwertkanal wird mit dem Parameter *Frequenzsollwertquelle* **475** konfiguriert.

Der Istwert kann über unterschiedliche Parameter zurück gelesen werden. Die Auswahl richtet sich nach dem benutztem Regelverfahren und der Anwendung. Möglich sind hier unter anderem:

□ Ständerfrequenz 210 (Datentyp Long [Hz])
 □ Frequenz Drehgeber 1 217 (Datentyp Long [Hz])
 □ Drehzahl Drehgeber 1 218 (Datentyp Int [min⁻¹])

Rampenfunktion

Betriebsart Rampensollwert 434

Der interne Sollwert aus dem Frequenzsollwertkanal und der Liniensollwert können einzeln oder als addierte Größe auf die Rampe geführt werden. Das Ergebnis steht am Ausgang der Rampenfunktion als *Sollfrequenz Rampe* **283** zur Verfügung.

Die Betriebsart der Rampenfunktion wird über den datensatzumschaltbaren Parameter *Rampensollwert* **434** eingestellt.

Zum Frequenzsollwertkanal: Siehe Betriebsanleitung zum Frequenzumrichter.

Rampensollwert 434	Funktion
1 – Interner Frequenzsollwert	Der interne Frequenzsollwert wird aus dem Frequenzsollwertkanal gebildet.
2 – Liniensollwert	Sollwert kommt von extern über den Bus.
3 – Interner Frequenzsollwert + Liniensollwert	Vorzeichenrichtige Addition von internem Frequenzsollwert und Liniensollwert.

Für *Rampensollwert* **434** = 3 ergibt sich das Vorzeichen des Gesamtsollwertes aus der Summe interner Frequenzsollwert + Liniensollwert.

Hinweis: Ist *Rampensollwert* **434** = 2 (nur Liniensollwert) wird dieser Wert auf fmin begrenzt.

Hierbei ist zu beachten, dass das Vorzeichen für fmin bei Sollwert = 0 aus dem Vorzeichen des letzten Liniensollwertes, der ungleich 0 war, abgeleitet wird.

Nach Netz-Ein wird der Liniensollwert auf +fmin (Motor Rechtslauf) begrenzt!

Die Sollwerte können per Bedieneinheit KP500 oder über die Bediensoftware VPlus am Frequenzumrichter über folgende Parameter kontrolliert werden:

□ Sollfrequenz intern 228 = interner Sollwert aus Frequenzsollwertkanal
 □ Sollfrequenz Bus 282 = Liniensollwert von serieller Schnittstelle
 □ Sollfrequenz Rampe 283 = Summe interner Frequenzsollwert + Liniensollwert

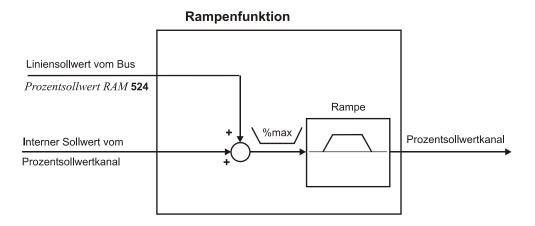
Hinweis:

Ist die serielle Schnittstelle des Moduls CM-232 bzw. CM-485 z. B. mit einer SPS verbunden, ist ein direkter Zugriff von VPlus auf den Frequenzumrichter über diese Schnittstelle nicht möglich.

In diesem Fall ist die Verbindung zum PC über den optionalen Schnittstellenadapter KP232 erforderlich.

Zum Frequenzsollwertkanal: Siehe Betriebsanleitung zum Frequenzumrichter.

9.2.2 Prozentsollwert


Zur Bildung des Prozentsollwertes stehen folgende Signalquellen zur Verfügung:

- Externer Sollwert als Liniensollwert vom Bus
- ☐ Interner Sollwert vom Prozentsollwertkanal

Der Liniensollwert mit der Parameterbezeichnung *Prozentsollwert RAM* **524** wird über den Bus an den Frequenzumrichter gesendet.

Der interne Sollwert gelangt über den Prozentsollwertkanal zum Frequenzumrichter. Der Prozentsollwertkanal wird mit dem Parameter *Prozentsollwertquelle* **476** konfiguriert.

Als Istwert kann der Parameter *Prozentsollwert* **229** zurück gelesen werden.

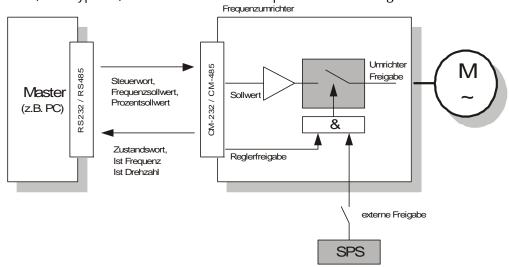
Der interne Sollwert aus dem Prozentsollwertkanal und der Liniensollwert werden als addierte Größe vorzeichenrichtig auf die Rampe geführt.

Zum Prozentsollwertkanal siehe Betriebsanleitung Frequenzumrichter.

Hinweis: □ Der Istwert-Parameter *Prozentsollwert* 229 kann über die Bedieneinheit KP500 oder über die Bediensoftware VPlus am Frequenzumrichter kontrolliert werden. □ Der *Prozentsollwert* 229 wird beispielsweise über die Funktionen "Technolo-

gieregler" oder "Drehmomentregler" (z. B. Drehzahlregler zur Drehmomentbegrenzung) in dem Frequenzumrichter verarbeitet. Näheres siehe Betriebsanleitung zum Frequenzumrichter.

Hinweis: Ist die serielle Schnittstelle des Moduls CM-232 bzw. CM-485 z. B. mit einer SPS verbunden, ist ein direkter Zugriff von VPlus auf den Frequenzumrichter über diese Schnittstelle nicht möglich.


In diesem Fall ist die Verbindung zum PC über den optionalen Schnittstellenadapter KP232 erforderlich.

10 ACU Steuerung/Sollwert

Der Frequenzumrichter kann vollständig über die serielle Schnittstelle gesteuert werden. Dazu existieren folgende Parameter und Istwerte:

	Parameter		Einstellung					
Nr.	Name/Bedeutung		Min.	Max.	Werkseinst.	Тур		
410	Steuerwort		0x0000	0xFFFF	-	uInt		
411	Zustandswort		0x0000	0xFFFF	-	uInt		
484	Frequenzsollwert RAM	[Hz]	-999,99	999,99	0,00	Long		
524	Prozentsollwert RAM	[%]	-300,00	300,00	0,00	Long		

Mit dem *Steuerwort* **410** (Datentyp uInt) werden Steuerkommandos an den Frequenzumrichter gesendet und mit dem *Frequenzsollwert RAM* **484** (Datentyp Long [Hz]), bzw. *Prozentsollwert RAM* **524** (Datentyp Long [%]) der Liniensollwert. Über das *Zustandswort* **411** (Datentyp uInt) wird der Zustand des Frequenzumrichters ausgelesen.

Hinweis: Steuerwort 410, Frequenzsollwert RAM 484 und Prozentsollwert RAM 524 werden im RAM des Frequenzumrichters gespeichert. Diese werden prinzipiell über den Datensatz 0 angesprochen.

Hinweis: Externe Freigabe

- ☐ Beim ACU Frequenzumrichter müssen die Eingänge S1IND und S7IND aktiviert werden.
- □ Diese Digitaleingänge haben die höchste Priorität und sind zu verdrahten.

Der Frequenzumrichter kann grundsätzlich über drei Betriebsarten gesteuert werden. Die Betriebsarten können über den datensatzumschaltbaren Parameter *Local/Remote* **412** ausgewählt werden.

	Parameter	Einstellung			
Nr.	Name/Bedeutung	Min.	Max.	Werkseinst.	
412	Local/Remote	0	44	44	

Für den Betrieb sind nur die Einstellungen 0, 1 und 2 relevant. Die weiteren Einstellungen beziehen sich auf die Steuerung über die Bedieneinheit KP500.

Local/Remote 412	Funktion
0 - Steuerung über Kontakte	Die Befehle Start und Stopp, sowie die Vorgabe der Drehrichtung erfolgen über Digitalsignale.
1 - Steuerung über State- machine	Der Frequenzumrichter wird über das Steuerwort gesteuert. Nur in dieser Betriebsart werden Positionierfunktionen durch das Steuerwort und die Betriebsarten unterstützt.
2 - Steuerung über Remote-Kontakte	Die Befehle Start und Stopp, sowie die Vorgabe der Drehrichtung erfolgen mit Hilfe von virtuellen Digitalsignalen des Steuerworts.

Hinweis: Der Parameter *Local/Remote* **412** ist datensatzumschaltbar, d. h. per Datensatzanwahl kann zwischen den unterschiedlichen Betriebsarten umgeschaltet werden.

Die Datensatzumschaltung kann lokal über Steuerkontakte an den Digitaleingängen des Frequenzumrichters erfolgen oder über den Bus. Für die Datensatzumschaltung über den Bus wird der Parameter *Datensatzanwahl* **414** genutzt.

	Parameter	Einstellung			
Nr.	Name/Bedeutung	Min.	Max.	Werkseinst.	
414	Datensatzanwahl	0	4	0	

Mit der Einstellung *Datensatzanwahl* **414** = 0 erfolgt die Datensatzumschaltung über die Digitaleingänge.

Ist *Datensatzanwahl* **414** auf 1, 2, 3 oder 4 gesetzt, wird der damit angewählte Datensatz aktiviert. Gleichzeitig ist die Datensatzumschaltung über die Digitaleingänge deaktiviert.

Über den Parameter aktiver Datensatz 249 kann der aktuell angewählte Datensatz ausgelesen werden. Der Parameter zeigt den angewählten Datensatz mit einem der Werte 1, 2, 3 oder 4 an. Dies ist unabhängig davon, ob die Datensatzumschaltung über die Digitaleingänge oder per Datensatzanwahl 414 erfolgte.

Hinweis: externe Freigabe

- □ Beim ACU Frequenzumrichter müssen die Eingänge STOA (S1IND) und STOB (S7IND) aktiviert werden.
- □ Diese Digitaleingänge haben die höchste Priorität und sind zu verdrahten.

10.1 Steuerung über Kontakte/Remote-Kontakte

In der Betriebsart "Steuerung über Kontakte" oder "Steuerung über Remote-Kontakte" (Parameter *Local/Remote* **412** = 0 oder 2) wird der Frequenzumrichter direkt über die Digitaleingänge S1IND ... S6IND oder über die einzelnen Bits der virtuellen Digitalsignale im Steuerwort gesteuert. Die Bedeutung dieser Eingänge ist in der Betriebsanleitung zum Frequenzumrichter beschrieben.

Steuerwort				
(<i>Local/Remote</i> 412 = 2)				
Bit Nr.	Name			
0	S1IND			
1	S2IND			
2	S3IND			
3	S4IND			
4	S5IND			
5	S6IND			
6	MFI1D			
7	EM-S1IND			
8	EM-S2IND			
9	EM-S3IND			
10	-			
11	-			
12	-			
13	-			
14	-			
15	-			

Statuswort				
Bit Nr.	Name			
0	Einschaltbereit			
1	Eingeschaltet			
2	Betrieb - Freigegeben			
3	Störung			
4	Spannung - Freigegeben			
5	Schnellhalt			
6	Einschalten gesperrt			
7	Warnung			
8	-			
9	Remote			
10	Ziel erreicht			
11	Interner Grenzwert aktiv			
12	-			
13	-			
14	-			
15	Warnung 2			

Hinweis:

Wird die Betriebsart "Steuerung über Remote-Kontakte" genutzt, muss die Reglerfreigabe an STOA (Klemme X210A.3) und STOB (Klemme X210B.2) eingeschaltet sein **und** das Bit 0 des Steuerwortes gesetzt werden, um den Antrieb zu starten. Die Betriebsarten "Steuerung über Kontakte" und "Steuerung über Remote-Kontakte" unterstützen nur die Betriebsart "Geschwindigkeit".

Hinweis:

KFU 2-/4- Frequenzumrichter unterstützen eine externe 24 V Spannungsversorgung für die Steuerelektronik des Frequenzumrichters. Auch bei ausgeschalteter Netzspannung ist die Kommunikation zwischen der Steuerung (SPS) und dem Frequenzumrichter möglich.

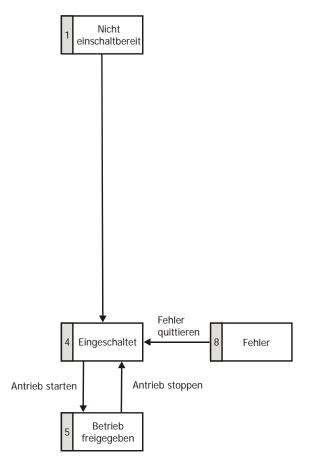
Das Bit 4 "Spannung – Freigegeben" des Statuswortes zeigt den aktuellen Status der Netzversorgung.

Bit 4 "Spannung – Freigegeben" = 0 signalisiert "Keine Netzspannung" und das Starten des Antriebs ist nicht möglich.

Bit 4 "Spannung – Freigegeben" = 1 signalisiert "Netzspannung eingeschaltet" und der Antrieb ist startbereit.

Hinweis:

Bei der Verwendung von Remote-Kontakten werden die Signalquellen* virtuell vom Steuerwort 410 übernommen. Signale an den Hardware-Klemmen werden über die Standard-Betriebsarten (z. B. 71 für S2IND) nicht ausgewertet.


Um Signale an den Hardware-Klemmen auswerten zu können, stehen spezielle Betriebsarten zur Verfügung, die mit dem Zusatz "(Hardware)" gekennzeichnet sind und von 526 bis 546 nummeriert zur Verfügung stehen.

Ausnahme: Die Freigabe muss immer über die Hardware-Eingänge STOA (Klemme X210A.3) und STOB (Klemme X210B.2) und das Bit 0 "S1IND" des Steuerwortes erfolgen.

Eine Reglerfreigabe allein per Software ist nicht möglich.

* Signalquellen sind: S1IND ... S6IND, MFI1D, EM-S1IND ... EM-S3IND

Statemachine:

Statuswort	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
Eingeschaltet	1	0	0	0	1	1
Betrieb freigegeben	1	1	0	1	1	1
Fehler	×	×	1	×	×	×

Hinweis: "x" bedeutet beliebiger Wert.

Das Bit 7 "Warnbit" kann zu beliebigen Zeitpunkten eine geräteinterne Warnmeldung anzeigen und führt, abhängig von der Ursache, zur Abschaltung des Frequenzumrichters.

Das Bit 10 "**Ziel erreicht**" wird gesetzt, wenn der vorgegebene Sollwert erreicht wurde. Im Sonderfall Netzausfallstützung wird das Bit auch dann gesetzt, wenn die Netzausfallstützung die Frequenz O Hz erreicht hat (siehe Betriebsanleitung zum Frequenzumrichter).

Für "Sollwert erreicht" gilt eine Hysterese (Toleranzbereich), die über den Parameter *max. Regelabweichung* **549** eingestellt werden kann (siehe Betriebsanleitung zum Frequenzumrichter).

Das Bit 11 "Interner Grenzwert aktiv" zeigt an, dass eine interne Begrenzung aktiv ist. Dies kann beispielsweise die Strombegrenzung, die Drehmomentbegrenzung oder die Überspannungsregelung sein. Alle Funktionen führen dazu, dass der Sollwert verlassen oder nicht erreicht wird.

Das Bit 15 "**Warnung 2**" meldet einen kritischen Betriebszustand, der innerhalb kurzer Zeit zu einer Störungsabschaltung des Frequenzumrichters führt. Dieses Bit wird gesetzt, wenn eine zeitverzögerte Warnung für Motor-Temperatur, Kühlkörper-/Innenraum-Temperatur, Ixt-Überwachung oder Netzphasenausfall anliegt.

10.2 Steuerung über Statemachine

In dieser Betriebsart (*Local/Remote* **412** = 1) wird der Frequenzumrichter über das *Steuerwort* der Statemachine angesteuert.

Der Übergang 4 zum Zustand "Betrieb freigegeben" ist nur möglich, wenn:

- ☐ In einer Konfiguration für die Positioniersteuerung (Parameter *Konfiguration* **30** = x40) die Reglerfreigabe über STOA und STOB gesetzt ist.
- □ In anderen Konfigurationen (Parameter *Konfiguration* **30** x40) die Reglerfreigabe über STOA und STOB und einer der Digitaleingänge S2IND oder S3IND gesetzt ist. (S2IND = Start Rechtslauf/S3IND = Start Linkslauf)

Das Verhalten im Übergang 5 kann über den Parameter *Uebergang* 5 392 eingestellt werden. Freier Auslauf, Stillsetzen über Rampe (reversierbar) oder Gleichstrombremsen kann gewählt werden (siehe Kapitel "Verhalten bei Übergang 5").

Steuerwort 410					
Bit	Meaning				
0	Einschalten				
1	Spannung – Freigeben				
2	Schnellhalt				
3	Betrieb – Freigeben				
4	Betriebsartabhängig				
5	Betriebsartabhängig				
6	Betriebsartabhängig				
7	Fehler rücksetzen				
8	Halt				
9	Betriebsartabhängig				
10	Reserviert				
11	Herstellerabhängig				
12	Herstellerabhängig				
13	Herstellerabhängig				
14	Herstellerabhängig				
15	Herstellerabhängig				

Bits 9 15 nicht genutzt

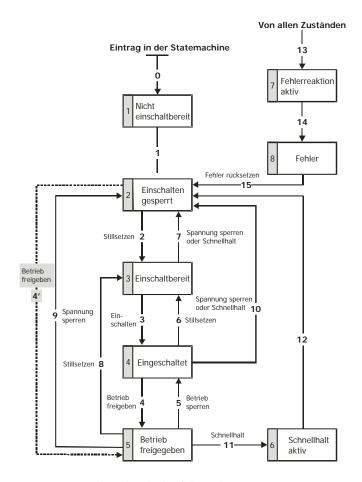
Statuswort 411					
Bit	Meaning				
0	Einschaltbereit				
1	Eingeschaltet				
2	Betrieb – Freigegeben				
3	Fehler				
4	Spannung – Freigegeben				
5	Schnellhalt				
6	Einschalten – gesperrt				
7	Warnung				
8	Herstellerabhängig				
9	Remote				
10	Ziel erreicht				
11	Interner Grenzwert aktiv				
12	Betriebsartabhängig				
13	Betriebsartabhängig				
14	Herstellerabhängig				
15	Herstellerabhängig Warnung 2				

Bit 14 nicht genutzt

Die *Steuerwort*-Bits 4, 5, 6 "*Betriebsartabhängig"* und Bit 8 "*Halt*" werden nur in den Konfigurationen der Positioniersteuerung genutzt (Parameter *Konfiguration* **30** = x40).

Die *Statuswort*-Bits 12 und 13 "*Betriebsartabhängig"* werden nur in den Konfigurationen der Positioniersteuerung genutzt (Parameter *Konfiguration* 30 = x40).

Hinweis


KFU 2-/4- Frequenzumrichter unterstützen eine externe 24 V Spannungsversorgung für die Steuerelektronik des Umrichters. Auch bei ausgeschalteter Netzspannung ist die Kommunikation zwischen der Steuerung (SPS) und dem Frequenzumrichter möglich.

Das Bit 4 "Spannung – Freigegeben" des Statuswortes zeigt den aktuellen Status der Netzversorgung.

Bit 4 "Spannung – Freigegeben" = 0 signalisiert "Keine Netzspannung" und das Starten des Antriebs ist nicht möglich.

Bit 4 "Spannung – Freigegeben" = 1 signalisiert "Netzspannung eingeschaltet" und der Antrieb ist startbereit.

Statemachine:

Die Befehle zur Gerätesteuerung werden durch die folgenden Bitmuster im *Steuerwort* ausgelöst.

Steuerwort							
	Bit 7	Bit 3	Bit 2	Bit 1	Bit O		
Befehl	Fehler rückset- zen	Betrieb freigeben	Schnellhalt	Spannung freigeben	Einschalten	Übergänge	
Stillsetzen	X	X	1	1	0	2, 6, 8	
Einschalten	X	0	1	1	1	3	
Einschalten	X	1	1	1	1	3	
Spannung sperren	X	X	Х	0	Х	7, 9, 10, 12	
Schnellhalt	X	X	0	1	Х	7, 10, 11	
Betrieb sperren	X	0	1	1	1	5	
Betrieb freigeben	X	1	1	1	1	4	
Fehler rücksetzen	0 ⇒ 1	×	×	X	х	15	

[&]quot;X" bedeutet beliebiger Wert.

Hinweis: Der Übergang 3 (Befehl "Einschalten") wird nur verarbeitet, wenn das Bit 4 "Spannung freigegeben" des Statusworts gesetzt ist.

Der Übergang 4' ist nur für Konfigurationen ohne Positioniersteuerung (Parameter Konfiguration 30 • x40) verfügbar und wird nur verarbeitet, wenn das Bit 4 "Spannung freigegeben" des Statusworts gesetzt ist. Diese Funktion ist abwärtskompatibel mit älteren Softwareversionen.

Das Statuswort zeigt den Betriebszustand.

Statuswort							
	Bit 6	Bit 5	Bit 3	Bit 2	Bit 1	Bit O	
Zustand	Einschalten gesperrt	Schnellhalt	Fehler	Betrieb freige- geben	Einge- schaltet	Einschalt- bereit	
Einschalten gesperrt	1	Х	0	0	0	0	
Einschaltbereit	0	1	0	0	0	1	
Eingeschaltet	0	1	0	0	1	1	
Betrieb freigegeben	0	1	0	1	1	1	
Schnellhalt aktiv	0	0	0	1	1	1	
Fehlerreaktion aktiv	0	Х	1	1	1	1	
Fehler	0	Х	1	0	0	0	

[&]quot;X" bedeutet beliebiger Wert.

Das Bit 7 "Warnbit" kann zu beliebigen Zeitpunkten gesetzt werden. Es zeigt eine geräteinterne Warnmeldung an.

Die anliegende Warnung kann im Warnstatus mit dem Parameter *Warnungen* **270** ausgelesen werden.

Das Bit 9 "Remote" wird gesetzt, wenn die Betriebsart auf Steuerung über Statemachine (*Lo-cal/Remote* 412 = 1) gesetzt ist und die Reglerfreigabe eingeschaltet ist.

Logische Verknüpfung der digitalen Steuersignale:

STOA UND STOB UND (Start Rechtslauf ODER Start Linkslauf)

Der Frequenzumrichter kann nur gesteuert werden, wenn die logische Verknüpfung wahr ist. Die logischen Eingänge für Start Rechtslauf und Start Linkslauf können direkt mit "Ein" verbunden werden (Parameter *Start-rechts* **68** und *Start-links* **69**).

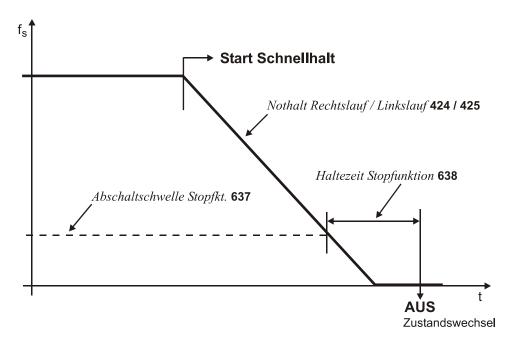
Hinweis: Für Konfigurationen mit Positioniersteuerung (Parameter *Konfiguration* **30** = x**40**) muss nur der Digitaleingang S1IND gesetzt werden. Start Rechtslauf und Start

Linkslauf haben in diesen Konfigurationen keine Funktion.

Das Bit 10 "Ziel erreicht" wird gesetzt, wenn der eingestellte Sollwert erreicht wird.

In Konfigurationen ohne Positioniersteuerung (Parameter Konfiguration 30 • x40) bezieht sich "Ziel erreicht" auf das Objekt für Sollgeschwindigkeit 0x6042 Zielgeschwindigkeit. Im Sonderfall Netzausfallstützung wird das Bit auch dann gesetzt, wenn die Netzausfallstützung die Frequenz 0 Hz erreicht hat (siehe Betriebsanleitung zum Frequenzumrichter).

Für "Sollwert erreicht" gilt eine Hysterese (Toleranzbereich), die über den Parameter *max. Regelabweichung* **549** eingestellt werden kann (siehe Betriebsanleitung zum Frequenzumrichter).


Das Bit 11 "Interner Grenzwert aktiv" zeigt an, dass eine interne Begrenzung aktiv ist. Dies kann beispielsweise die Strombegrenzung, die Drehmomentbegrenzung oder die Überspannungsregelung sein. Alle Funktionen führen dazu, dass der Sollwert verlassen oder nicht erreicht wird.

Das Bit 15 "Warnung 2" meldet einen kritischen Betriebszustand, der innerhalb kurzer Zeit zu einer Störungsabschaltung des Frequenzumrichters führt. Dieses Bit wird gesetzt, wenn eine zeitverzögerte Warnung für Motor-Temperatur, Kühlkörper-/Innenraum-Temperatur, Ixt-Überwachung oder Netzphasenausfall anliegt.

10.2.1 Verhalten bei Schnellhalt

Hierbei sind die Parameter *Abschaltschwelle Stopfkt*. **637** (Prozentwert von Parameter *maximale Frequenz* **419**) und *Haltezeit Stopfunktion* **638** (Haltezeit nach Unterschreiten der Abschaltschwelle) relevant.

Beim Schnellhalt wird der Antrieb über die Notstopp-Rampen (*Nothalt Rechtslauf* **424** oder *Nothalt Linkslauf* **425**) stillgesetzt.

Ist während der Abschaltzeit die Frequenz/Drehzahl Null erreicht, wird der Antrieb weiterhin bestromt, bis die Abschaltzeit abgelaufen ist. Mit dieser Maßnahme wird sichergestellt, dass beim Zustandswechsel der Antrieb steht.

Hinweis: Das Verhalten bei Schnellhalt ist nur für Konfigurationen ohne Positioniersteuerung relevant (Parameter *Konfiguration* **30** • x**40**).

10.2.2 Verhalten bei Übergang 5

Das Verhalten im Übergang "5" von "Betrieb freigegeben" nach "Eingeschaltet" ist über den Parameter *Uebergang* 5392 parametrierbar.

	Parameter	Einstellung		
No.	Beschreibung	Min.	Max.	Werkseinst.
392	Übergang	0	2	2

Betriebsart	Funktion	
0 -Freier Auslauf	Sofortiger Übergang von "Betrieb freigegeben" nach "Eingeschaltet", freier Auslauf des Antriebs.	
1 -Gleichstrombremse	Aktivierung Gleichstrombremse, mit dem Ende der Gleichstrombremsung erfolgt der Wechsel von "Betrieb freigegeben" nach "Eingeschaltet".	
2 -Rampe	Übergang mit normaler Rampe, nach Erreichen des Stillstands erfolgt der Wechsel von "Betrieb freigegeben" nach "Eingeschaltet".	

Hinweis:

Die Einstellung 1 "Gleichstrombremse" ist nur bei Anwendungen mit U/f-Kennliniensteuerung (z. B. Konfiguration 110) möglich. Andere Konfigurationen unterstützen diese Betriebsart nicht.

Wird der Frequenzumrichter mit einer Konfiguration betrieben, welche die Betriebsart Gleichstrombremse nicht unterstützt (z. B. Konfiguration 210, Feldorientierte Regelung), kann der Wert "1" nicht eingestellt werden.

Die Betriebsart wird in diesem Fall auch nicht in den Auswahlmenüs der Bedieneinheit KP500 sowie der Bediensoftware VPlus angeboten.

Hinweis:

Die Werkseinstellung für *Uebergang 5* **392** ist die Betriebsart 2 (Rampe). Für Konfigurationen mit Drehmomentregelung ist die Werkseinstellung gleich 0 (freier Auslauf).

Bei einem Umschalten der Konfiguration wird gegebenenfalls der Einstellwert für Übergang 5392 geändert.

Hinweis: Das Verhalten im Übergang "5" ist nur für Konfigurationen ohne Positioniersteuerung relevant (Parameter *Konfiguration* **30** • x**40**).

Ist *Uebergang* 5392 mit dem Wert 1 "Gleichstrombremse" angestoßen worden, wird erst nach dem Abschluss des Übergangsvorgangs ein neues Steuerwort akzeptiert. Der Zustandswechsel von "Betrieb freigegeben" nach "Eingeschaltet" erfolgt nach Ablauf der für die Gleichstrombremse parametrierten *Bremszeit* 632.

Ist der Parameter *Uebergang* 5392 = 2 "Rampe" eingestellt, kann während des Herunterfahrens des Antriebs das Steuerwort wieder auf "Betrieb freigeben" gesetzt werden. Damit läuft der Antrieb wieder auf seinen eingestellten Sollwert hoch und verbleibt im Zustand "Betrieb freigegeben".

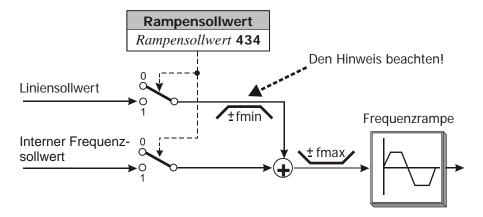
Der Zustandswechsel von "Betrieb freigegeben" nach "Eingeschaltet" erfolgt nach Unterschreiten der eingestellten Abschaltschwelle und nach Ablauf der eingestellten Haltezeit (äquivalent zum Verhalten bei Schnellhalt). Hierbei sind die Parameter

Abschaltschwelle Stopfkt. 637 (Prozentwert von Parameter maximale Frequenz 419) und Haltezeit Stopfunktion 638 (Haltezeit nach Unterschreiten der Abschaltschwelle) relevant.

10.2.3 Sollwert/Istwert

Die Steuerung (SPS) kann den Frequenz-Sollwert für den Frequenzumrichter über den Parameter *Frequenzsollwert RAM* **484** vorgeben.

Dazu muss der Parameter *Rampensollwert* **434** entsprechend auf eine Quelle, die "Liniensollwert" beinhaltet, eingestellt werden.


Die Steuerung (SPS) kann den Prozent-Sollwert für den Frequenzumrichter über den Parameter *Prozentsollwert RAM* **524** vorgeben.

Der Wert der Steuerung wird immer mit dem lokalen Quellenwert der *Prozentsollwertquelle* **476** addiert.

Hinweis: Die Parameter *Frequenzsollwert RAM* **484** und *Prozentsollwert RAM* **524** können nur beschrieben werden. Ein Lesezugriff ist nicht möglich.

Die Nutzung des Soll-/Istwertkanals ist abhängig von der eingestellten Konfiguration (Regelverfahren). Der Istwert wird entsprechend dem benutzten Regelverfahren erzeugt.

Der Istwert kann von der Steuerung über Parameter *Istfrequenz* **241** ausgelesen werden. Zusätzlich stehen die internen Sollfrequenzen zum Auslesen zur Verfügung.

Der interne Sollwert aus dem Frequenzsollwertkanal und der Liniensollwert können einzeln oder als addierte Größe auf die Rampe geführt werden. Die Betriebsart der Rampenfunktion wird über den datensatzumschaltbaren Parameter *Rampensollwert* **434** eingestellt.

	Parameter	Einstellung			
Nr.	Beschreibung	Min.	Max.	Werkseinst.	
434 Rampensollwert		1	3	3	

Betriebsart	Funktion
1 - Interner Frequenzsollwert	Der interne Frequenzsollwert wird aus dem Frequenzsollwertkanal gebildet.
2 - Liniensollwert	Der Sollwert kommt von extern über den Bus.
3 - Interner Frequenzsollwert + Liniensollwert	Vorzeichenrichtige Addition von internem Frequenzsollwert und Liniensollwert.

Hinweis: Diese Funktion ist nur für Konfigurationen ohne Positioniersteuerung relevant (Parameter *Konfiguration* **30** • x**40**).

Hinweis:

Ist *Rampensollwert* **434** = 2 (nur Liniensollwert) wird dieser Wert auf fmin begrenzt.

Hierbei ist zu beachten, dass das Vorzeichen für fmin bei Sollwert = 0 aus dem Vorzeichen des letzten Liniensollwertes, der ungleich 0 war, abgeleitet wird. Nach Netz-Ein wird der Liniensollwert auf +fmin (Motor Rechtslauf) begrenzt!

Für *Rampensollwert* **434** = 3 ergibt sich das Vorzeichen des Gesamtsollwertes aus der Summe interner Frequenzsollwert + Liniensollwert.

Die Sollwerte können per Bedieneinheit KP500 oder über die Bediensoftware VPlus am Frequenzumrichter über folgende Parameter kontrolliert werden:

Istwerte					
Parameter	Inhalt	Format			
Sollfrequenz intern 228	Interner Sollwert aus Frequenzsollwertkanal	xxx.xx Hz			
Sollfrequenz Bus 282	Liniensollwert von serieller Schnittstelle	xxx.xx Hz			
Sollfrequenz Rampe 283	Summe interner Frequenzsollwert + Linien- sollwert	xxx.xx Hz			

11 Parameterliste

Die folgenden Tabellen enthalten Parameter, die für die Kommunikationsmodule CM-232 bzw. CM-485 relevant sind. Alle weiteren Parameter siehe Betriebsanleitung zum Frequenzumrichter. Zur besseren Übersicht sind die Parameter mit Piktogrammen gekennzeichnet:

- Der Parameter ist in den vier Datensätzen verfügbar.
- ✓ Der Parameterwert wird von der SETUP-Routine eingestellt.
- 🗴 Dieser Parameter ist im Betrieb des Frequenzumrichters nicht schreibbar.
- Dieser Parameter ist über die Bedieneinheit KP500 und über die Bediensoftware VPlus nicht zugänglich sondern nur über den Kommunikationskanal.

 $I_{\text{\tiny FUN}}, U_{\text{\tiny FUN}}, P_{\text{\tiny FUN}}$: Nennwerte des Frequenzumrichters, ü: Überlastfähigkeit des Frequenzumrichters

11.1 Istwertmenü (VAL)

	Istwerte des Frequenzumrichters								
	Nr.	Name/Bedeutung	Einh.	Anzeigebereich	Kapitel				
	228	Sollfrequenz intern	Hz	-1000,00 1000,00	9.2.1; 10.2.3				
	229	Prozentsollwert	%	± 300,00	9.2.2				
	249	aktiver Datensatz	-	1 4	9; 10				
	250	Digitaleingänge	ı	0 255	9.1.3				
X	260	aktueller Fehler	ı	0 0xFFFF	9.1; 12.2				
X	270	Warnungen	-	0 0xFFFF (bitkodiert)	9.1; 10.1; 12.1				
	282	Sollfrequenz Bus	Hz	-1000,00 1000,00	9.2.1; 10.2.3				
	283	Sollfrequenz Rampe	Hz	-1000,00 1000,00	9.2.1; 10.2.3				
	411	Zustandswort	-	0 0xFFFF	9; 9.1				

11.2 Parametermenü (PARA)

	RS232 / RS485						
	Nr.	Name/Bedeutung	Einh.	Einstellbereich	Kapitel		
	10	Baudrate	-	1 6	5.2; 5.3		
ĺ		U	mrichtero	laten			
\times	11	VABus SST-Error-Register	-		6.6		
\otimes	34	Programm(ieren)	-	0 9999	5.2; 5.3		
ĺ	Bussteuerung						
\times	392	Übergang 5	_	0 2	9.1.2.2; 10.2; 10.2.2		
ĺ		R	S232 / R	S485			
	394	RS232/RS485 NodeID	-	1 30	5.2, 5.3		
	395	Protokolltyp	-	0 3	6		
ĺ	Bussteuerung						
	410	Steuerwort		0 0xFFFF	9; 9.1		
	412	Local/Remote	_	0 44	9; 9.1; 10; 10.1		

		R	S232 / R	S485		
	Nr.	Name/Bedeutung	Einh.	Einstellbereich	Kapitel	
	413 RS232/RS485 Watchdog Timer			0 10000	5; 6.9	
Į		Date	nsatzums	chaltung		
	414	Datensatzanwahl	-	0 4	9; 10	
		Fre	equenzra	mpen		
	424	Nothalt Rechtslauf	Hz/s	0,01 9999,99	9.1.2.1; 10.2.1	
	425	Nothalt Linkslauf	Hz/s	0,01 9999,99	9.1.2.1; 10.2.1	
	434	Rampensollwert	-	1 3	9.2.1; 10.2.3	
		F	estfreque	nzen		
X	484	Frequenzsollwert RAM	Hz	-999,99 999,99	9.2.1	
		Fe	stprozen	twerte		
X	524	Prozentsollwert RAM	%	-300,00 300,00	9.2.2	
	Digitalausgänge					
	549	max. Regelabweichung	%	0,01 20,00	9.1; 10.1; 10.2	
		Gle	ichstrom	bremse		
8	632	Bremszeit	S	0,0 200,0	9.1.2.1; 9.1.2.2	
1		Aι	ıslaufverl	halten		
7	637	Abschaltschwelle Stoppfunktion	%	0,0 100,0	9.1.2.1; 9.1.2.2; 10.2.1; 10.2.2	
7	638	Haltezeit Stoppfunktion	S	0,0 200,0	9.1.2.1; 9.1.2.2; 10.2.1; 10.2.2	
ļ			Modbu	SS		
	1375	Modbus Parität	-	0 2	5.2.1; 5.3.1	
	1376	Modbus Adresse	-	1 247	5.2.2; 5.3.2	

12 Anhang

12.1 Warnmeldungen

Die verschiedenen Steuer- und Regelverfahren und die Hardware des Frequenzumrichters beinhalten Funktionen, die kontinuierlich die Anwendung überwachen. Ergänzend zu den in der Betriebsanleitung zum Frequenzumrichter dokumentierten Meldungen werden weitere Warnmeldungen durch die Kommunikationsmodule CM-232 / CM-485 aktiviert.

Die Warnmeldungen erfolgen bitcodiert gemäß folgendem Schema über den Parameter *Warnungen* **270**.

Warnmeldungen				
Bit-Nr.	Warncode	Beschr	eibung	
0	0x0001	Warnung Ixt	1) 2)	
1	0x0002	Warnung Kurzzeit Ixt	1)	
2	0x0004	Warnung Langzeit Ixt	2)	
3	0x0008	Warnung Kühlkörperter	nperatur Tk	
4	0x0010	Warnung Innenraumter	nperatur Ti	
5	0x0020	Warnung I-Limit		
6	0x0040	Warnung Init		
7	0x0080	Warnung Motortemper	atur	
8	0x0100	Warnung Netzphasenau	ısfall	
9	0x0200	Warnung Motorschutzs	chalter	
10	0x0400	Warnung Fmax		
11	0x0800	Warnung Analogeingan	g MFI1A	
12	0x1000	Warnung Analogeingan	g A2 (EM-S1INA)	
13	0x2000	Warnung Systembus-Sla	ave in Störung	
14	0x4000	Warnung Udc		
15	0x8000	Warnung Keilriemen		

^{1) 2):} Bit 0 "Warnung Ixt" wird stets dann gesetzt,

- □ wenn Bit 1 "Warnung Kurzzeit Ixt" **oder**
- □ wenn Bit 2 "Warnung Langzeit Ixt" gesetzt ist.

Hinweis: Die einzelnen Warnungen sind in der Betriebsanleitung zum Frequenzumrichter de-

tailliert beschrieben.

Hinweis: Im Parameter Warnungen 270 können mehrere Warnungen gleichzeitig ange-

zeigt werden.

Beispiel:

Meldung	Warncode	Bemerkung
Warnung Ixt	0x0001	Wird gesetzt bei Kurzzeit oder Langzeit I x t
Kurzzeit Ixt	0x0002	
Warngrenze Kühlkörpertemperatur	0x0008	
Warngrenze Motortemperatur	0x0080	
Summe	0x008B	

12.2 Fehlermeldungen

Störmeldungen sind über den Parameter *Aktueller Fehler* **260** auslesbar. Der nach einer Störung gespeicherte Fehlerschlüssel besteht aus der Fehlergruppe FXX (High-Byte, hexadezimal) und der nachfolgenden Kennziffer YY (Low-Byte, hexadezimal).

	Fehlermeldung generell				
Schl	üssel	Bedeutung			
F00	00	Es ist keine Störung aufgetreten.			

Überlast			
Schlüssel		Bedeutung	
F01	00	Frequenzumrichter überlastet.	
	02	Frequenzumrichter überlastet (60 s), Lastverhalten prüfen.	
	03	Kurzzeitige Überlastung (1s), Motor- und Anwendungsparameter prüfen.	

Kühlkörper			
Schl	üssel	Bedeutung	
F02	00	Kühlkörpertemperatur zu hoch, Kühlung und Ventilator prüfen.	
	01	Temperaturfühler defekt oder Umgebungstemperatur zu gering.	

Innenraum				
Schlüssel Bedeutung				
F03	00	Innenraumtemperatur zu hoch, Kühlung und Ventilator prüfen.		
	01	Innenraumtemperatur zu gering, Schaltschrankheizung prüfen.		

Motoranschluss			
Schl	üssel	Bedeutung	
F04	00	Motortemperatur zu hoch oder Fühler defekt, Anschluss S6IND prüfen.	
	01	Der Motorschutzschalter hat ausgelöst, Antrieb prüfen.	
	02	Die Keilriemenüberwachung meldet den Leerlauf des Antriebs.	
	03	Motorphasenausfall, Motor und Verkabelung prüfen.	

	Ausgangstrom			
Schl	üssel	Bedeutung		
F05	00	Überlastet, Lastverhältnisse und Rampen prüfen.		
	03	Kurz- oder Erdschluss, Motor und -verkabelung prüfen.		
	04	Überlastet, Lastverhältnisse und Stromgrenzwertregler prüfen.		
	05	Unsymmetrischer Motorstrom, Motor und Verkabelung prüfen.		
	06	Motorphasenstrom zu hoch, Motor und Verkabelung prüfen.		
	07	Meldung der Phasenüberwachung, Motor und -verkabelung prüfen.		

	Zwischenkreisspannung			
Sch	lüssel	Bedeutung		
F07	00	Zwischenkreisspannung zu hoch, Verzögerungsrampen und angeschlossenen Bremswiderstand überprüfen.		
	01	Zwischenkreisspannung zu klein, Netzspannung prüfen.		
	02	Netzausfall, Netzspannung und Schaltung prüfen.		
	03	Phasenausfall, Netzsicherung und Schaltung prüfen.		
	04	Sollwert UD-Begrenzung 680 zu klein, Netzspannung prüfen.		
	05	Brems-Chopper <i>Triggerschwelle</i> 506 zu klein, Netzspannung prüfen.		
	06	Motor-Chopper <i>Triggerschwelle</i> 507 zu klein, Netzspannung prüfen.		

Elektronikspannung				
Schlüssel Bedeutung		Bedeutung		
F08	01	Elektronikspannung 24 V zu gering, Steuerklemmen prüfen.		
	04	Elektronikspannung zu hoch, Verdrahtung der Steuerklemmen prüfen.		

	Ausgangsfrequenz			
Schlüssel		Bedeutung		
F11	00	Ausgangsfrequenz zu hoch, Steuersignale und Einstellungen prüfen.		
	01	Max. Frequenz durch Regelung erreicht, Verzögerungsrampen und angeschlossenen Bremswiderstand überprüfen.		

Motoranschluss							
Schlüssel		Bedeutung					
F13	00	Erdschluss am Ausgang, Motor und Verkabelung prüfen.					
	01	Eingestellte <i>Grenze IDC-Kompensation</i> 415 erreicht, Motor und Verkabelung prüfen, gegebenenfalls Grenze erhöhen.					
	10	Mindeststromüberwachung, Motor und Verkabelung prüfen.					

Steueranschluss							
Schlüssel		Bedeutung					
F14	01	Sollwertsignal am Multifunktionseingang 1 fehlerhaft, Signal prüfen.					
	07	Überstrom am Multifunktionseingang 1, Signal prüfen.					
	30	Drehgebersignal ist fehlerhaft, Anschlüsse S4IND und S5IND prüfen.					
	31	Eine Spur des Drehgebersignals fehlt, Anschlüsse prüfen.					
	32	Drehrichtung vom Drehgeber falsch, Anschlüsse prüfen.					

Kommunikation							
Schlüssel		Bedeutung					
F20	10	Kommunikations-Watchdog RS232/RS485					

Hinweis: Neben den genannten Fehlermeldungen gibt es weitere Fehlermeldungen, die jedoch nur für firmeninterne Zwecke genutzt werden und an dieser Stelle nicht aufgelistet werden.

Sollten Sie Fehlermeldungen erhalten, die nicht in der Liste aufgeführt sind, stehen wir Ihnen gerne zur Verfügung.

12.3 ASCII Tabelle (0x00 – 0x7F)

Dez.	Hex.	Char.	Dez.	Hex.	Char.	Dez.	Hex.	Char.
0	00	NUL	43	2B	+	86	56	V
1	01		44	2C	r	87	57	W
2	02	STX	45	2D	-	88	58	X
3	03	ETX	46	2E		89	59	Y
4	04	EOT	47	2F	/	90	5A	Z
5	05	ENQ	48	30	0	91	5B	[
6	06	ACK	49	31	1	92	5C	\
7	07	BEL	50	32	2	93	5D]
8	08	BS	51	33	3	94	5E	^
9	09	TAB	52	34	4	95	5F	_
10	0A	LF	53	35	5	96	60	`
11	OB	VT	54	36	6	97	61	a
12	0C	FF	55	37	7	98	62	b
13	0D	CR	56	38	8	99	63	С
14	OE		57	39	9	100	64	d
15	OF		58	3A	:	101	65	е
16	10		59	3B	;	102	66	f
17	11		60	3C	<	103	67	g
18	12		61	3D	=	104	68	h
19	13		62	3E	>	105	69	i
20	14		63	3F	?	106	6A	j
21	15	NAK	64	40	@	107	6B	k
22	16		65	41	Α	108	6C	I
23	17		66	42	В	109	6D	m
24	18		67	43	С	110	6E	n
25	19		68	44	D	111	6F	0
26	1A		69	45	E	112	70	р
27	1B	ESC	70	46	F	113	71	q
28	1C		71	47	G	114	72	r
29	1D		72	48	Н	115	73	S
20	1E		73	49	I	116	74	t
31	1F		74	4A	J	117	75	u
32	20	SPACE	75	4B	K	118	76	٧
33	21	!	76	4C	L	119	77	w
34	22	"	77	4D	M	120	78	×
35	23	#	78	4E	N	121	79	у
36	24	\$	79	4F	0	122	7A	Z
37	25	%	80	50	Р	123	7B	{
38	26	&	81	51	Q	124	7C	I
39	27	1	82	52	R	125	7D	}
40	28	(83	53	S	126	7E	~
41	29)	84	54	Т	127	7F	DEL
42	2A	*	85	55	U			

Hinweis: Häufig benutzte Werte sind grau markiert.